Skip to main content
Log in

Deformation Behavior and Mechanical Properties of AA7075 During Pre-hardened Aluminum Alloy Hot Forming Process

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The long production cycle and high energy consumption limit the widespread application of the Hot Form Quench (HFQ®) process. Hence, a novel hot stamping process was proposed, known as pre-hardened aluminum alloy hot forming (PAHF), which is of high quality, efficiency, and performance. In this project, the deformation behavior, microstructure evolution, and mechanical properties of AA7075 in PAHF were studied by uniaxial isothermal tensile tests and microstructure observations. The flow stress decreased with the increase of deformation temperature and the decrease of strain rate, exhibiting a thermal softening and strain rate sensitivity. The elongation reached at least 15.85% at higher temperatures, which was 50% higher than that at room temperature. At temperatures ≤ 400°C, AA7075 exhibited higher elongation in HFQ® than in PAHF. However, the elongation in HFQ® at 450°C/1 s−1 decreased to 16%, comparable to the lowest in PAHF at 15.3%. At a deformation temperature of 200°C and a strain rate of 1 s−1, the peak strength decreased from original 571.2 MPa to 450.9 MPa and decreased even more under other deformation conditions. The grain size remains unchanged after deformation. As the deformation temperature increased, the fracture characteristics in PAHF gradually evolved from intergranular fracture to ductile fracture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. X. Wang, W. Sun, J. Chen, F. Wang, L. Li, and J. Cui, Rare Met. 40(08), 2154 (2021).

    Article  Google Scholar 

  2. Z.W. Gu, H.R. Chen, L.L. Yi, Z.M. Tang, M. Wang, and G. Yu, Mater. 15(23), 8290 (2022).

    Article  Google Scholar 

  3. A. Dabwan, A.E. Ragab, M.A. Saleh, A.M. Ghaleb, M.Z. Ramadan, S.H. Mian, T.M. Khalaf, and P.I. Mech, Eng. L.-J. Mat. 235(9), 2056 (2021).

    Google Scholar 

  4. F. Feng, J.J. Li, L. Huang, R.C. Chen, and S. Fan, Int. J. Adv. Manuf. Tech. 121(9–10), 6059 (2022).

    Article  Google Scholar 

  5. J. Lin, T. Dean, R.Garrett, A Process in Forming High Strength and Complex-Shaped Al-Alloy Sheet Components (British Patent, vol. WO2008059242, 2008).

  6. A. Ilinich, S. Luckey, Sae Technical Papers, 1 (2014).

  7. N.R. Harrison, and S.G. Luckey, SAE Int. J. Mater. Manuf. 7(3), 567 (2014).

    Article  Google Scholar 

  8. R.P. Garrett, J. Lin, and T.A. Dean, Adv. Mater. Res. 6–8, 673 (2005).

    Article  Google Scholar 

  9. H. Li, Z. Hu, L. Hua, and Y. Chen, Rare Met. Mater. Eng. 48(04), 1029 (2019).

    Google Scholar 

  10. Y. Liu, Z. Zhu, Z. Wang, B. Zhu, Y. Wang, and Y. Zhang, Procedia Eng. 207, 723 (2017).

    Article  Google Scholar 

  11. W. Xiao, K. Zheng, B. Wang, and X. Yang, Arch. Civ. Mech. Eng. 20, 93 (2020).

    Article  Google Scholar 

  12. X. Fan, Z. He, S. Yuan, and L. Peng, Mat. Sci. Eng. A 587, 221 (2013).

    Article  Google Scholar 

  13. X. Fan, Z. He, W. Zhou, and S. Yuan, J. Mater. Process. Tech. 228, 179 (2016).

    Article  Google Scholar 

  14. M.S. Mohamed, A.D. Foster, J. Lin, D.S. Balint, and T.A. Dean, Int J Mach Tool Manu 53, 27 (2012).

    Article  Google Scholar 

  15. L. Wang, M. Strangwood, D. Balint, J. Lin, and T.A. Dean, Mat. Sci. Eng. A 528, 2648 (2011).

    Article  Google Scholar 

  16. W. Ma, B. Wang, L. Yang, X. Tang, W. Xiao, and J. Zhou, Mater. Des. 88, 1119 (2015).

    Article  Google Scholar 

  17. H. Geng, Y. Wang, B. Zhu, Z. Wang, Y. Zhang, and T. Nonferr, Metal. Soc. 32, 3516 (2022).

    Google Scholar 

  18. Z. Zhang, J. Yu, and D. He, Mat. Sci. Eng. A 743, 500 (2019).

    Article  Google Scholar 

  19. Y. Liu, B. Zhu, Y. Wang, S. Li, and Y. Zhang, Int. J. Lightweight Mater. Manuf. 3, 20 (2020).

    Google Scholar 

  20. Y.F. Jiang, H. Ding, M.H. Cai, Y. Chen, Y. Liu, and Y.S. Zhang, Mater Charact 158, 109967 (2019).

    Article  Google Scholar 

  21. J. Zheng, Y. Dong, K. Zheng, H. Dong, J. Lin, J. Jiang, and T.A. Dean, J. Alloys Compd. 810, 151934 (2019).

    Article  Google Scholar 

  22. K. Omer, A. Abolhasani, S. Kim, T. Nikdejad, C. Butcher, M. Wells, S. Esmaeili, and M. Worswick, J. Mater. Process. Technol. 257, 170 (2018).

    Article  Google Scholar 

  23. H. Xiao, S. Jiang, C. Shi, K. Zhang, Z. Lu, and J. Jiang, Mat. Sci. Eng. A 756, 442 (2019).

    Article  Google Scholar 

  24. Y. Liu, M. Huang, Z. Ma, and L. Zhan, J. Alloys Compd. 673, 358 (2016).

    Article  Google Scholar 

  25. W. Zhang, H. Li, Z. Hu, and L. Hua, Mat. Sci. Eng. A 792, 139749 (2020).

    Article  Google Scholar 

  26. W. Zhang, Q. Pang, J. Lu, and Z. Hu, J. Mater. Process. Technol. 312, 117854 (2023).

    Article  Google Scholar 

  27. H. Li, Z. Hu, L. Hua, and Q. Sun, JOM 71, 4778 (2019).

    Article  Google Scholar 

  28. K. Zheng, Y. Dong, D. Zheng, J. Lin, and T.A. Dean, J. Mater. Process. Technol. 268, 87 (2019).

    Article  Google Scholar 

  29. M. Kumar, N. Sotirov, and C.M. Chimani, J. Mater. Process. Technol. 214(8), 1769 (2014).

    Article  Google Scholar 

  30. W. Huo, L. Hou, Y. Zhang, and J. Zhang, Mat. Sci. Eng. A 675, 44 (2016).

    Article  Google Scholar 

  31. T. Marlaud, A. Deschamps, F. Bley, W. Lefebvre, and B. Baroux, Acta Mater. 58, 4814 (2010).

    Article  Google Scholar 

  32. T. Marlaud, A. Deschamps, F. Bley, W. Lefebvre, and B. Baroux, Acta Mater. 58, 248 (2010).

    Article  Google Scholar 

  33. J. Zuo, L. Hou, J. Shi, H. Cui, L. Zhuang, and J. Zhang, J. Alloys Compd. 708, 1131 (2017).

    Article  Google Scholar 

  34. R. Hingole, and K. Kolhe, Fundamentals of Metal Forming (Lap Lambert Academic Publishing, Germany, 2017).

    Google Scholar 

  35. I. Westermann, K.O. Pedersen, T. Furu, T. Borvik, and O.S. Hopperstad, Mech. Mater. 79, 58 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (52305412), the Key Project of Scientific Research Plan of Hubei Provincial Department of Education (D20221505), the Research Fund Program of Hubei Provincial Key Laboratory of Chemical Equipment Intensification and Intrinsic Safety (2021KA02, 2023KA02), and the Science Foundation of Wuhan Institute of Technology (K2021019, K2023096, K2023118).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruolin Wu.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Dai, W., Yan, W. et al. Deformation Behavior and Mechanical Properties of AA7075 During Pre-hardened Aluminum Alloy Hot Forming Process. JOM 76, 2575–2585 (2024). https://doi.org/10.1007/s11837-024-06450-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-024-06450-4

Navigation