Skip to main content
Log in

Resource Utilization of Iron Ore Tailings to Recover SiO2 Sand Through S-HGMS: Parametric Optimization and Mechanism Analysis

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Iron ore tailings (IOTs) are an important solid waste in the mining industry, which can pollute the environment and endanger human health. However, the disposal and high value-added utilization of iron tailings have always been a challenge. Notably, superconducting high-gradient magnetic separation (S-HGMS) technology is a promising technology in mineral processing with the advantages of low carbon, green, high efficiency, and easy operation. This study used S-HGMS technology to separate and purify SiO2 concentrate from IOTs. Under the optimal conditions of magnetic flow ratio of 0.038 T s/m for the first magnetic separation, 0.085 T s/m for the second, pulp flow rate of 0.5 L/min, and pulp concentration of 50 g/L, increasing the SiO2 content from initial 61.38% to 95.23%, SiO2 recovery reached 38.51%. After the S-HGMS process, weak and non-magnetic particles realized effective separation, which created the conditions for the subsequent processing of SiO2 concentrate into high-purity silica. S-HGMS technology was used to extract SiO2 particles from IOTs, improving the utilization value of the tailings. This study provides an efficient and eco-friendly research direction for the industrial application of IOTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. K. Wang, S. Liu, K. Liu, M. Dan, X. Ji, Y. Lu, and Y. Xing, Environ. Sci. Technol. 57, 11510 https://doi.org/10.1021/acs.est.3c02624 (2023).

    Article  Google Scholar 

  2. Y. Li, S. Li, X. Pan, X. Zhao, and P. Guo, J. Environ. Manag. 339, 117932 https://doi.org/10.1016/j.jenvman.2023.117932 (2023).

    Article  Google Scholar 

  3. X. Han, F. Wang, Y. Zhao, J. Meng, G. Tian, L. Wang, and J. Liang, Environ. Chem. Lett. 21, 1005 https://doi.org/10.1007/s10311-022-01541-7 (2023).

    Article  Google Scholar 

  4. T.S.W. Sá, S. Oda, V.K.C.B.L. Machado, and R.D. Toledo Filho, Constr. Build. Mater. 342, 128072 https://doi.org/10.1016/j.conbuildmat.2022.128072 (2022).

    Article  Google Scholar 

  5. R.B. Saldanha, A.M.L. Caicedo, M.T. de Araújo, H.C. Scheuermann Filho, C.J. Moncaleano, J.P.S. Silva, and N.C. Consoli, Constr. Build. Mater. 365, 130008 https://doi.org/10.1016/j.conbuildmat.2022.130008 (2023).

    Article  Google Scholar 

  6. N. Zhang, B. Tang, and X. Liu, Constr. Build. Mater. 288, 123022 https://doi.org/10.1016/j.conbuildmat.2021.123022 (2021).

    Article  Google Scholar 

  7. F. Han, L. Li, S. Song, and J. Liu, Powder Technol. 315, 322 https://doi.org/10.1016/j.powtec.2017.04.022 (2017).

    Article  Google Scholar 

  8. A.P. Wolff, G.M. Da Costa, and F. De Castro Dutra, Miner. Process. Extr. Metall. Rev. 32, 47 https://doi.org/10.1080/08827508.2010.530718 (2011).

    Article  Google Scholar 

  9. H. Kobayashi, J. Garnier, D.S. Mulholland, C. Quantin, F. Haurine, M. Tonha, C. Joko, D. Olivetti, R. Freydier, P. Seyler, J.M. Martinez, and H.L. Roig, J. Hazard. Mater. 448, 130828 https://doi.org/10.1016/j.jhazmat.2023.130828 (2023).

    Article  Google Scholar 

  10. G. Yao, Q. Wang, Y. Su, J. Wang, J. Qiu, and X. Lyu, Miner. Eng. 145, 106068 https://doi.org/10.1016/j.mineng.2019.106068 (2020).

    Article  Google Scholar 

  11. K. Islam and S. Murakami, Glob. Environ. Change 70, 102361 https://doi.org/10.1016/j.gloenvcha.2021.102361 (2021).

    Article  Google Scholar 

  12. W. Chen, S. Yin, G. Zhou, Z. Li, and Q. Song, J. Clean. Prod. 332, 130129 https://doi.org/10.1016/j.jclepro.2021.130129 (2022).

    Article  Google Scholar 

  13. J. Zhao, K. Ni, Y. Su, and Y. Shi, Constr. Build. Mater. 286, 122968 https://doi.org/10.1016/j.conbuildmat.2021.122968 (2021).

    Article  Google Scholar 

  14. Y.-H. Cheng, B.-Q. Tong, X.-H. Sun, and J.-Y. Zhang, Environ. Sci. Pollut. Res. 29, 73326 https://doi.org/10.1007/s11356-022-20964-x (2022).

    Article  Google Scholar 

  15. S. Bai, G. Tian, L. Gong, Q. Tang, J. Meng, X. Duan, and J. Liang, Chem. Eng. Res. Des. 159, 543 https://doi.org/10.1016/j.cherd.2020.04.038 (2020).

    Article  Google Scholar 

  16. J.M. Franco de Carvalho, K. Defáveri, J.C. Mendes, W. Schmidt, H.-C. Kühne, and R.A.F. Peixoto, Constr. Build. Mater. 272, 121640 https://doi.org/10.1016/j.conbuildmat.2020.121640 (2021).

    Article  Google Scholar 

  17. K. Wang, Y. Liu, Z. Dou, G. Lu, X. Li, and T.-A. Zhang, JOM 74, 2750 https://doi.org/10.1007/s11837-022-05264-6 (2022).

    Article  Google Scholar 

  18. Y. Zhang, L. Wang, Y. Duan, B. Liu, and J. Liang, Ceram. Int. 48, 11709 https://doi.org/10.1016/j.ceramint.2022.01.029 (2022).

    Article  Google Scholar 

  19. C. Lu, H. Yang, J. Wang, Q. Tan, and L. Fu, Sci. Total. Environ. 736, 139483 https://doi.org/10.1016/j.scitotenv.2020.139483 (2020).

    Article  Google Scholar 

  20. Z. Wei, Y. Jia, S. Wang, Z. Li, Y. Li, X. Wang, and Y. Gao, J. Clean. Prod. 335, 130318 https://doi.org/10.1016/j.jclepro.2021.130318 (2022).

    Article  Google Scholar 

  21. S.S. Sarathchandra, Z. Rengel, and Z.M. Solaiman, Chemosphere 288, 132573 https://doi.org/10.1016/j.chemosphere.2021.132573 (2022).

    Article  Google Scholar 

  22. Q. Yi, S.L. Wu, G. Southam, L. Robertson, F. You, Y.J. Liu, S.C. Wang, N. Saha, R. Webb, J. Wykes, T.S. Chan, Y.R. Lu, and L.B. Huang, Environ. Sci. Technol. 55, 8020 https://doi.org/10.1021/acs.est.1c00848 (2021).

    Article  Google Scholar 

  23. S. Yuan, H. Ding, R. Wang, Q. Zhang, Y. Li, and P. Gao, Adv. Powder Technol. 33, 103643 https://doi.org/10.1016/j.apt.2022.103643 (2022).

    Article  Google Scholar 

  24. A.D. Bas, Miner. Eng. 161, 106739 https://doi.org/10.1016/j.mineng.2020.106739 (2021).

    Article  Google Scholar 

  25. R. Hossain and V. Sahajwalla, J. Clean. Prod. 316, 128344 https://doi.org/10.1016/j.jclepro.2021.128344 (2021).

    Article  Google Scholar 

  26. Y. Zhang, K. Wang, G. Jia, J. Li, H. Wang, and Y. Tian, J. Alloy. Compd. 860, 157914 https://doi.org/10.1016/j.jallcom.2020.157914 (2021).

    Article  Google Scholar 

  27. M. Lin, Z. Liu, Y. Wei, B. Liu, Y. Meng, H. Qiu, S. Lei, X. Zhang, and Y. Li, Min. Metall. Explor. 37, 1627 https://doi.org/10.1007/s42461-020-00247-0 (2020).

    Article  Google Scholar 

  28. J.-S. Li, X.-X. Li, Q. Shen, Z.-Z. Zhang, and F.-H. Du, Environ. Sci. Technol. 44, 7673 https://doi.org/10.1021/es101104c (2010).

    Article  Google Scholar 

  29. M. Lin, Z. Pei, and S. Lei, Minerals. https://doi.org/10.3390/min7090161 (2017).

    Article  Google Scholar 

  30. A. Tuncuk and A. Akcil, Int. J. Miner. Process. 153, 44 https://doi.org/10.1016/j.minpro.2016.05.021 (2016).

    Article  Google Scholar 

  31. H. Zhang, W. Chai, and Y. Cao, Appl. Surf. Sci. 576, 151834 https://doi.org/10.1016/j.apsusc.2021.151834 (2022).

    Article  Google Scholar 

  32. X.N. Bu, G. Evans, G.Y. Xie, Y.L. Peng, Z.G. Zhang, C. Ni, and L.H. Ge, Appl. Clay Sci. 143, 437 https://doi.org/10.1016/j.clay.2017.04.020 (2017).

    Article  Google Scholar 

  33. T.S. Qiu, X. Huang, and X.L. Yang, JOM 68, 548 https://doi.org/10.1007/s11837-015-1726-8 (2016).

    Article  Google Scholar 

  34. Y.R. Chen, X.N. Bu, V.N.T. Truong, Y.L. Peng, and G.Y. Xie, Miner. Eng. 141, 105845 https://doi.org/10.1016/j.mineng.2019.105845 (2019).

    Article  Google Scholar 

  35. V. Nunna, S.P. Suthers, M.I. Pownceby, and G.J. Sparrow, Miner. Process. Extr. Metall. Rev. 43, 1049 https://doi.org/10.1080/08827508.2021.2003353 (2022).

    Article  Google Scholar 

  36. Q. Cheng, G. Mei, W. Xu, and Q. Yuan, Miner. Eng. 180, 107491 https://doi.org/10.1016/j.mineng.2022.107491 (2022).

    Article  Google Scholar 

  37. J.X. Gao, Z. Tong, X.N. Bu, M. Bilal, Y. Hu, C. Ni, and G.Y. Xie, Fuel 337, 127145 https://doi.org/10.1016/j.fuel.2022.127145 (2023).

    Article  Google Scholar 

  38. L.C. Moura, F.P. André, H. Miceli, R. Neumann, and L.M. Tavares, Miner. Process. Extr. Metall. Rev. 40, 333 https://doi.org/10.1080/08827508.2019.1643341 (2019).

    Article  Google Scholar 

  39. Y. Li, S. Li, B. Hu, X. Zhao, and P. Guo, Sep. Purif. Technol. 285, 120372 https://doi.org/10.1016/j.seppur.2021.120372 (2022).

    Article  Google Scholar 

  40. T. Ohara, H. Kumakura, and H. Wada, Physica C 357–360, 1272 https://doi.org/10.1016/S0921-4534(01)00530-5 (2001).

    Article  Google Scholar 

  41. C. Yang, S. Li, C. Zhang, J. Bai, and Z. Guo, Miner. Process. Extr. Metall. Rev. 39, 44 https://doi.org/10.1080/08827508.2017.1324439 (2018).

    Article  Google Scholar 

  42. L. Chen, T. Xiong, D. Xiong, R. Yang, Y. Peng, Y. Shao, J. Xu, and J. Zeng, Miner. Eng. 170, 106967 https://doi.org/10.1016/j.mineng.2021.106967 (2021).

    Article  Google Scholar 

  43. L. Chen, W. Liu, J. Zeng, and P. Ren, Powder Technol. 313, 54 https://doi.org/10.1016/j.powtec.2017.03.011 (2017).

    Article  Google Scholar 

  44. X.F. Zhang, X.M. Tan, Y.J. Yi, W.Z. Liu, and C. Li, JOM 69, 2352 https://doi.org/10.1007/s11837-017-2521-5 (2017).

    Article  Google Scholar 

  45. J. Xu, D. Xiong, S. Song, and L. Chen, Results Phys. 10, 837 https://doi.org/10.1016/j.rinp.2018.07.027 (2018).

    Article  Google Scholar 

  46. J. Zeng, L. Chen, R. Yang, X. Tong, P. Ren, and Y. Zheng, Int. J. Miner. Process. 168, 48 https://doi.org/10.1016/j.minpro.2017.09.005 (2017).

    Article  Google Scholar 

  47. J. Xu, J. Chen, X. Ren, T. Xiong, K. Liu, and S. Song, Sep. Sci. Technol. 57, 484 https://doi.org/10.1080/01496395.2021.1900250 (2022).

    Article  Google Scholar 

  48. Z. Yuan, X. Zhao, J. Lu, H. Lv, and L. Li, Int. J. Min. Sci. Technol. 31, 1043 https://doi.org/10.1016/j.ijmst.2021.10.011 (2021).

    Article  Google Scholar 

  49. F. Mishima, S. Takeda, M. Fukushima, and S. Nishijima, Phys. C-Supercond. Appl. 463, 1302 https://doi.org/10.1016/j.physc.2007.04.304 (2007).

    Article  Google Scholar 

  50. X. Zheng, Y. Wang, and D. Lu, Miner. Eng. 79, 94 https://doi.org/10.1016/j.mineng.2015.06.004 (2015).

    Article  Google Scholar 

  51. Y.K. Li, S.Q. Li, X.D. Pan, X. Zhao, P.H. Guo, and Z.K. Zhao, Powder Technol. 424, 118523 https://doi.org/10.1016/j.powtec.2023.118523 (2023).

    Article  Google Scholar 

  52. Y.K. Li, S.Q. Li, X.D. Pan, X. Zhao, and P.H. Guo, Sep. Sci. Technol. 58, 822 https://doi.org/10.1080/01496395.2022.2151471 (2023).

    Article  Google Scholar 

  53. G. Yang, Y. Deng, H. Ding, Z. Lin, Y. Shao, and Y. Wang, Appl. Clay Sci. 111, 61 https://doi.org/10.1016/j.clay.2015.04.005 (2015).

    Article  Google Scholar 

  54. E. Larsen and R.A. Kleiv, Miner. Eng. 98, 49 https://doi.org/10.1016/j.mineng.2016.07.021 (2016).

    Article  Google Scholar 

  55. K.I. Vatalis, G. Charalambides, and N.P. Benetis, Procedia Econ. Finance 24, 734 https://doi.org/10.1016/S2212-5671(15)00688-7 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Shiyanjia Lab (www.shiyanjia.com) for the VSM and XRF analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suqin Li.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 236 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, A., Yang, X., Li, C. et al. Resource Utilization of Iron Ore Tailings to Recover SiO2 Sand Through S-HGMS: Parametric Optimization and Mechanism Analysis. JOM 76, 2392–2402 (2024). https://doi.org/10.1007/s11837-024-06447-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-024-06447-z

Navigation