Skip to main content
Log in

Effect of Preparation Process on Microstructure and Mechanical Properties of Metal Hollow Sphere Composites (MHSCs)

  • Advanced Functional and Structural Thin Films and Coatings
  • Published:
JOM Aims and scope Submit manuscript

Abstract

In order to study the effect of the preparation process on the microstructure and mechanical properties of metal hollow sphere composites (MHSCs), they were fabricated using different preparation processes (different holding times) by a pressure casting method. The physical parameters of the MHSCs were measured using a direct measurement method, and the phases and microstructure of the MHSCs were observed using an X-ray diffractometer (XRD), scanning electron microscope (SEM), energy dispersive spectrometer (EDS), and transmission electron microscope (TEM). Moreover, the mechanical properties of MHSCs were analyzed by a Zwick/Roell Z2.5 microhardness tester and a universal testing machine. The microscopic morphology and composition analysis results showed that the microstructures of MHSCs varied by holding time, while the mechanical properties test results implied that the microhardness of the transition layer and the matrix increased with the extension of the holding time. However, the MHSCs held for 10 min exhibited the best compression performance. These observations indicated that the compressive properties of MHSCs were mainly dependent on the transition layer and the matrix, excluding the influence of metal hollow spheres, and that the transition layer had a significant impact on the compression performance of MHSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data and Code Availability

The data that support the findings of this study are available from the corresponding author, [author wang], upon reasonable request.

References

  1. J. Marx and A. Rabiei, Adv. Eng. Mater. 19, 1600776 (2017).

    Article  Google Scholar 

  2. A. Rabiei and A.T. O’Neill, Mater. Sci. Eng. A 404, 159 (2005).

    Article  Google Scholar 

  3. A. Rabiei, L. Vendra, N. Reese, N. Young, and B.P. Neville, Mater. Trans. 47, 2148 (2006).

    Article  Google Scholar 

  4. B.P. Neville and A. Rabiei, Mater. Des. 29, 388 (2008).

    Article  Google Scholar 

  5. H. Goehler, U. Jehring, J. Meinert, R. Hauser, P. Quadbeck, K. Kuemmel, G. Stephani, and B. Kieback, Adv. Eng. Mater. 16, 335 (2014).

    Article  Google Scholar 

  6. W.S. Sanders and L.J. Gibson, Mater. Sci. Eng. A 347, 70 (2003).

    Article  Google Scholar 

  7. O. Friedl, C. Motz, H. Peterlik, S. Puchegger, N. Reger, and R. Pippan, Metall. Mater. Trans. B 39, 135 (2008).

    Article  Google Scholar 

  8. M. Vesenjak, Z. Ren, T. Fiedler, and A. Oechsner, J. Compos. Mater. 43, 2491 (2009).

    Article  Google Scholar 

  9. A. Judith, J. Brown, and A. Rabiei, Metall. Mater. Trans. A 41, 2784 (2010).

    Article  Google Scholar 

  10. L. Vendra and A. Rabiei, Mater. Sci. Eng. A 527, 1784 (2010).

    Article  Google Scholar 

  11. J.L. Vendra, A. Rabiei, and A.J. Brown, J. Mater. Sci. 46, 4574 (2011).

    Article  Google Scholar 

  12. A. Rabiei and M. Garcia-Avila, Mater. Sci. Eng. A 564, 539 (2013).

    Article  Google Scholar 

  13. Y. Alvandi-Tabrizi, D.A. Whisler, H. Kim, and A. Rabiei, Mater. Sci. Eng. A 631, 248 (2015).

    Article  Google Scholar 

  14. S. Chen, J. Marx, and A. Rabiei, Int. J. Therm. Sci. 106, 70 (2016).

    Article  Google Scholar 

  15. C. Wang, F. Jiang, S. Shao, T. Yu, and C. Guo, Metals 10, 1047 (2020).

    Article  Google Scholar 

  16. T. Yu, F. Jiang, J. Wang, Z. Wang, and C. Guo, Compos. Struct. 248, 112566 (2020).

    Article  Google Scholar 

  17. S. Chen, M. Bourham, and A. Rabiei, Radiat. Phys. Chem. 96, 27 (2014).

    Article  Google Scholar 

  18. S. Chen, M. Bourham, and A. Rabiei, Radiat. Phys. Chem. 117, 12 (2015).

    Article  Google Scholar 

  19. S. Chen, M. Bourham, and A. Rabiei, Radiat. Phys. Chem. 109, 27 (2015).

    Article  Google Scholar 

  20. J. Marx, M. Portanova, and A. Rabiei, Compos. Struct. 194, 652 (2018).

    Article  Google Scholar 

  21. M. Garcia-Avila, M. Portanova, and A. Rabiei, Compos. Struct. 125, 202 (2015).

    Article  Google Scholar 

  22. K. Májlinger and I.N. Orbulov, Mater. Sci. Eng. A 606, 248 (2014).

    Article  Google Scholar 

  23. D.P. Mondal, J. Nidhi, and B. Anshul, Mater. Sci. Eng. A 534, 521 (2012).

    Article  Google Scholar 

  24. J.A.S. Maria, B.F. Schultz, J.B. Ferguson, and P.K. Rohatgi, Mater. Sci. Eng. A 582, 415 (2013).

    Article  Google Scholar 

  25. J.B. Ferguson, J.A.S. Maria, B.F. Schultz, and P.K. Rohatgi, Mater. Sci. Eng. A 582, 423 (2013).

    Article  Google Scholar 

  26. L.C. Zou, Q. Zhang, B.J. Pang, G.H. Wu, L.T. Jiang, and H. Su, Mater. Des. 45, 555 (2013).

    Article  Google Scholar 

  27. O.K. Balch, J.G. O’Dwyer, and G.R. Davis, Mater. Sci. Eng. A 391, 408 (2005).

    Article  Google Scholar 

  28. M. Hartmann, K. Reindel, and R.F. Singer, MRS Proc. 521, 211 (1998).

    Article  Google Scholar 

  29. D.D. Luong, V.C. Shunmugasamy, N. Gupta, D. Lehmhus, J. Weise, and J. Baumeister, Mater. Des. 66, 516 (2015).

    Article  Google Scholar 

  30. D.P. Mondal, J.D. Majumder, N. Jha, A. Badkul, S. Das, A. Patel, and G. Gupta, Mater. Des. 34, 82 (2012).

    Article  Google Scholar 

  31. A. Daoud, Mater. Sci. Eng. A 488, 281 (2008).

    Article  Google Scholar 

  32. D. Yang, W. Chen, J. Lu, Z. Hu, and H. Wang, J. Mater. Sci. Technol. 33, 1141 (2017).

    Article  Google Scholar 

  33. L. Peroni, M. Scapin, M. Avalle, J. Weise, and D. Lehmhus, Mater. Sci. Eng. A 552, 364 (2012).

    Article  Google Scholar 

  34. W. Chun, J. Feng, Q. Ruo, Y. Tian, and G. Chun, J. Mater. Eng. Perform. 2, 31 (2021).

    Google Scholar 

  35. M. Cao, F. Jiang, C. Wang, H. Cui, and Z. Wang, Mater. Sci. Eng. A 780, 139188 (2020).

    Article  Google Scholar 

  36. Y. Tian, J. Feng, W. Chun, C. Meng, W. Zhen, C. Yun, and G. Chun, Met. Mater. Int. 5, 462 (2019).

    Google Scholar 

  37. Q. Ruo, J. Feng, C. Meng, L. Yan, Z. He, G. Chun, and W. Zhen, Mater. Today Commun. 30, 103039 (2021).

    Google Scholar 

  38. N. Bharat and P.S.C. Bose, Sadhana Acad. Proc. Eng. Sci. 48, 237 (2023).

    Google Scholar 

  39. N. Bharat and P.S.C. Bose, Silicon-Neth. 15, 4703 (2023).

    Article  Google Scholar 

  40. N. Bharat and P.S.C. Bose, Surf. Topogr. Metrol. 10, 2 (2022).

    Google Scholar 

  41. N. Bharat and P.S.C. Bose, Ceram. Int. 49, 12 (2023).

    Article  Google Scholar 

  42. N. Bharat, P.S.C. Bose, and P.I. Mech, Eng. Lett. J. Mat. 237, 753 (2023).

    Google Scholar 

  43. W. Chun, G. Chun, Q. Ruo, and J. Feng, J. Alloys Compd. 895, 162658 (2021).

    Google Scholar 

  44. J.C. Viala, M. Peronnet, F. Barbeau, F. Bosselet, and J. Bouix, Compos. Part A Appl. Sci. Manuf. 33, 1417 (2002).

    Article  Google Scholar 

  45. S. Lee, B. Kim, and S. Lee, Mater. Trans. 52, 1053 (2011).

    Article  Google Scholar 

  46. T. Maitra and S.P. Gupta, Mater Charact 49, 293 (2002).

    Article  Google Scholar 

Download references

Acknowledgements

Start up fee for scientific research of high-level talents in West Anhui University in 2022 (No. WGKQ2022061).

Author information

Authors and Affiliations

Authors

Contributions

Chunhe Wang, Data curation, Conceptualization, Methodology; Sifang Cheng, Investigation; Meizhi Gao, Writing—Review and Editing; Lin Ding, Validation.

Corresponding author

Correspondence to Chunhe Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Cheng, S., Gao, M. et al. Effect of Preparation Process on Microstructure and Mechanical Properties of Metal Hollow Sphere Composites (MHSCs). JOM 76, 2154–2165 (2024). https://doi.org/10.1007/s11837-024-06430-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-024-06430-8

Navigation