Skip to main content
Log in

Effect of Non-isothermal Cooling Aging on the Microstructure and Properties of Al-Zn-Mg-Cu Alloys

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Non-isothermal cooling aging treatment (NCA) of the Al-Zn-Mg-Cu alloy can obtain an excellent comprehensive performance. The properties of the alloy were studied by hardness, friction and wear, intergranular corrosion, spalling corrosion, and electrochemical corrosion, the microstructure of the alloy was observed by transmission electron microscopy, and the relationship between the microstructure evolution and properties of the alloy after cooling aging was analyzed. The results show that after NCA, the number of matrix precipitated phases of the 20-C120 alloy is large and uniformly distributed, and the hardness reaches 188.5 HV, which far exceeds the hardness of the T6 alloy (171.6 HV). The friction coefficient is 0.56, the weight loss is 7.2 mg, and the wear resistance is good. Grain boundary precipitated phases (GBPs) at the grain boundary are intermittently distributed and independently rounded, and width of the precipitation-free zone (PFZ) is 50.1 nm, which destroys the occurrence of corrosion and improves corrosion resistance. The intergranular corrosion depth is 42.3 μm, and the exfoliation corrosion grade is EA, and the icorr and Vcorr are 0.0026 mA/cm2 and 0.0844 mm/a, respectively. The comprehensive performance is better than T6 and T76.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S.P. Knight, K. Pohl, N.J.H. Holroyd, N. Birbilis, P.A. Rometsch, and B.C. Muddle, Corros. Sci. 50–62, 98 (2015).

    Google Scholar 

  2. R.M. Su, Y.D. Qu, J.H. You, and R.D. Li, J. Mater. Res. 31, 573–579 (2016).

    Article  ADS  CAS  Google Scholar 

  3. M. Safyari, M. Moshtaghi, and S. Kuramoto, J. Alloys Compd. 855, 157300 (2021).

    Article  CAS  Google Scholar 

  4. M.A. Khan, Y. Wang, M.J. Anjum, G. Yasin, A. Malik, F. Nazeer, et al., Vacuum 174, 109185 (2020).

    Article  ADS  CAS  Google Scholar 

  5. R.M. Su, T. Liu, Y.D. Qu, G. Bai, and R.D. Li, J. Mater. Eng. Perform. 28(4), 2212–2220 (2019).

    Article  CAS  Google Scholar 

  6. H.Q. Lin, L.Y. Ye, L. Sun, T. Xiao, S.D. Liu, Y.L. Deng, and X.M. Zhang, Trans. Nonferrous Met. Soc. China 28, 829–836 (2018).

    Article  CAS  Google Scholar 

  7. W. Guo, J. Guo, J. Wang, M. Yang, H. Li, X. Wen, and J. Zhang, Mater. Sci. Eng. A 684, 167–175 (2015).

    Article  Google Scholar 

  8. Y.C. Lin, Y.Q. Jiang, X.M. Chen, D.X. Wen, and H.M. Zhou, Mater. Sci. Eng. A 588, 347–356 (2013).

    Article  CAS  Google Scholar 

  9. Y.C. Lin, Y.Q. Jiang, X.C. Zhang, J. Deng, and X.M. Chen, Mater. Des. 61, 228–238 (2014).

    Article  CAS  Google Scholar 

  10. J.Z. Chen, G.A. Li, X. Cai, J.T. Jiang, W.Z. Shao, L. Yang, and L. Zhen, Materials 11, 720 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  11. Y. Liu, D.M. Jiang, B.Q. Li, W.S. Yang, and J. Hu, Mater. Des. 57, 79–86 (2014).

    Article  CAS  Google Scholar 

  12. D.M. Jiang, Y. Liu, S. Liang, and W.L. Xie, J. Alloys Compd. 681, 57–65 (2016).

    Article  CAS  Google Scholar 

  13. C.Y. Zang, W.L. Xiao, Y. Fu, and C.L. Ma, J. Alloys Compd. 952, 170023 (2023).

    Article  CAS  Google Scholar 

  14. P. Madhukar, N. Selvaraj, C.S.P. Rao, and G.V. Kumar, Ceram. Int. 46, 17103–17111 (2020).

    Article  CAS  Google Scholar 

  15. R.M. Su, Y.X. Jia, G.L. Li, Y.D. Qu, and R.D. Li, J. Alloys Compd. 947, 169578 (2023).

    Article  CAS  Google Scholar 

  16. T.S. Kiran, M.P. Kumar, S. Basavarajappa, and B.M. Viswanatha, Mater. Des. 63, 294–304 (2014).

    Article  CAS  Google Scholar 

  17. X. Wang, Q. Pan, L. Liu, S. Xiong, W. Wang, J. Lai, Y. Sun, and Z. Huang, Mater Charact 144, 131–140 (2018).

    Article  CAS  Google Scholar 

  18. K. Wen, B. Xiong, Y. Zhang, Z. Li, X. Li, S. Huang, L. Yan, H. Yan, and H. Liu, Met. Mater. Int. 24, 537–548 (2018).

    Article  CAS  Google Scholar 

  19. S.B. Pankade, D.S. Khedekar, and C.L. Gogte, Proc. Manuf. 20, 53–58 (2018).

    Google Scholar 

  20. T. Marlaud, B. Malki, C. Henon, A. Deschamps, and B. Baroux, Corros. Sci. 53, 3139–3149 (2011).

    Article  CAS  Google Scholar 

  21. Y.S. Lee, D.H. Koh, H.W. Kim, and Y.S. Ahn, Scr. Mater. 147, 45–49 (2018).

    Article  CAS  Google Scholar 

  22. Y. Zou, X.D. Wu, S.B. Tang, Q.Q. Zhu, H. Song, M.X. Guo, and L.F. Cao, J. Mater. Sci. Technol. 85, 106–117 (2021).

    Article  CAS  Google Scholar 

  23. K.N. Wang, R.M. Su, S.Y. Ma, Y.D. Qu, and R.D. Li, J. Mater. Eng. Perform. 29, 3297–3304 (2020).

    Article  CAS  Google Scholar 

  24. S.P. Knight, N. Birbilis, B.C. Muddle, A.R. Trueman, and S.P. Lynch, Corros. Sci. 52, 4073–4080 (2010).

    Article  CAS  Google Scholar 

  25. X. Sheng, Y. Yang, Y. Cheng, J. Li, W. Wu, Y. Liu, K. Li, Y. Zhao, and G. He, J. Alloys Compd. 845, 156198 (2020).

    Article  CAS  Google Scholar 

  26. R.M. Su, S.Y. Ma, K.N. Wang, G.L. Li, Y.D. Qu, and R.D. Li, Met. Mater. Int. 28, 862–870 (2022).

    Article  CAS  Google Scholar 

  27. W.J. Zhang, R.M. Su, G.L. Li, and Y.D. Qu, J. Alloys Compd. 960, 170953 (2023).

    Article  CAS  Google Scholar 

  28. N.L. Sukiman, H. Shi, R. Gupta, R. Buchheit, and N. Birbilis, J. Electrochem. Soc. 160, C299–C304 (2013).

    Article  CAS  Google Scholar 

  29. S.Y. Ma, R.M. Su, G.L. Li, Y.D. Qu, and R.D. Li, J. Phys. Chem. Solids 167, 110747 (2022).

    Article  CAS  Google Scholar 

  30. W. Wang, Q. Pan, X. Wang, Y. Sun, and Y. Liu, J. Alloys Compd. 845, 156286 (2020).

    Article  CAS  Google Scholar 

  31. T. Ramgopal, P.I. Gouma, and G.S. Frankel, Corros. US. 58, 687–697 (2002).

    Article  CAS  Google Scholar 

  32. S.D. Liu, B. Chen, C.B. Li, Y. Dai, Y.L. Deng, and X.M. Zhang, Corros. Sci. 91, 203–212 (2015).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Nature Science Foundation of China (52204394).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruiming Su.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest. All co-authors agree to publish in the JOM. All co-authors agree to participate in this journal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Su, R., Jin, M. et al. Effect of Non-isothermal Cooling Aging on the Microstructure and Properties of Al-Zn-Mg-Cu Alloys. JOM 76, 1951–1961 (2024). https://doi.org/10.1007/s11837-024-06414-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-024-06414-8

Navigation