Skip to main content
Log in

Study on the Mechanism of Nanobubble-Coated Flake Graphite Ore Flotation in Short Circuits

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Nanobubbles are an important means to enhance the flotation of fine refractory minerals. Generally, nanobubbles are preferentially adsorbed on mineral surfaces, which increases the hydrophobicity of the surfaces. For flake graphite ore, nanobubbles coated on graphite surfaces reduce the thickness of the hydrated film on the mineral surface and increase its hydrophobicity. In comparative experiments performed here, short flotation circuits of small flake graphite coated with nanobubbles achieved a 92.81% average fixed carbon grade of graphite concentrate, whereas conventional flotation circuits achieved an average of 88.15%. In addition, the concentrate recovery of short flotation circuits with nanobubbles was higher than that of conventional flotation circuits. This result shows that nanobubbles enhanced graphite particle flotation. Further, in this process, reducing the grinding duration is beneficial to avoid the overgrinding of concentrate, maintain the flake scale size of graphite, and improve the grade of the graphite concentrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S.D. Barma, P.K. Baskey, D.S. Rao, and S.N. Sahu, Ultrason. Sonochem. 56, 386 (2019).

    Article  CAS  PubMed  Google Scholar 

  2. B. Wang, Y.J. Peng, and S. Vink, Miner. Eng. 66–68, 145 (2014).

    Article  Google Scholar 

  3. S.T. Lou, Z.Q. Ouyang, Y. Zhang, X.J. Li, J. Hu, M.Q. Li, and F.J. Yang, J. Vacuum Sci. Technol. B: Microelectron. Nanometer Struct. Process. Measure. Phenomena 18, 2573 (2000).

    Article  ADS  CAS  Google Scholar 

  4. J.W. Tyrrell, and P. Attard, Phys. Rev. Lett. 87, 176104 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. F. Jin, J. Li, X. Ye, and C. Wu, J. Phys. Chem. B 111, 11745 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. S.J. Chen, Z. Yang, L. Chen, X.X. Tao, L.F. Tang, and H. He, Fuel 207, 214 (2017).

    Article  CAS  Google Scholar 

  7. Z. Javor, N. Schreithofer, and K. Heiskanen, Miner. Eng. 70, 109 (2015).

    Article  CAS  Google Scholar 

  8. R. Ahmadi, D.A. Khodadadi, M. Abdollahy, and M. Fan, Int. J. Min. Sci. Technol. 24, 559 (2014).

    Article  Google Scholar 

  9. A.F. Rosa, and J. Rubio, Miner. Eng. 127, 178 (2018).

    Article  CAS  Google Scholar 

  10. A.I. Khanchuk, G.F. Krysenko, D.G. Epov, A.V. Voit, V.P. Molchanov, and M.A. Medkov, Theor. Found. Chem. Eng. 51, 795 (2017).

    Article  CAS  Google Scholar 

  11. Q.T. Lai, Y.F. Liao, M.Y. An, Z.C. Liu, Y.L. Qiu, and L.F. Ma, Sep. Sci. Technol. 54, 766 (2019).

    Article  CAS  Google Scholar 

  12. W.G. Zhou, H. Chen, L.M. Ou, and Q. Shi, Int. J. Miner. Process. 157, 236 (2016).

    Article  CAS  Google Scholar 

  13. A.H. Englert, R.T. Rodrigues, and J. Rubio, Int. J. Miner. Process. 90, 27 (2009).

    Article  CAS  Google Scholar 

  14. L.J. Wang, Y.H. Wang, X.K. Yan, A. Wang, and Y.J. Cao, Chem. Eng. Sci. 158, 304 (2017).

    Article  CAS  Google Scholar 

  15. Intermolecular and Surface Forces (Third Edition), ed. J.N. Israelachvili (Academic Press, Boston, 2011), pp 663–676.

  16. J.C. Eriksson, S. Ljunggren, and P.M. Claesson, J. Chem. Soc. Faraday Trans. Mol. Chem. Phys. 85, 163 (1989).

    CAS  Google Scholar 

  17. M.U. Hammer, T.H. Anderson, A. Chaimovich, M.S. Shell, and J. Israelachvili, Faraday Discuss. 146, 299 (2010).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. S.J. Miklavcic, J. Chem. Phys. 103, 4794 (1995).

    Article  ADS  CAS  Google Scholar 

  19. M. Azadi, A.V. Nguyen, and G.E. Yakubov, Langmuir Acs J. Surfaces Colloids 31, 1941 (2015).

    Article  CAS  Google Scholar 

  20. N. Ishida, Y. Kusaka, and H. Ushijima, Langmuir 28, 13952 (2012).

    Article  CAS  PubMed  Google Scholar 

  21. A.S. Sayed-Ahmed, Cavitation nanobubble enhanced flotation process for more efficient coal recovery, (2013).

  22. S. Calgaroto, K.Q. Wilberg, and J. Rubio, Miner. Eng. 60, 33 (2014).

    Article  CAS  Google Scholar 

  23. Z.A. Zhou, Chow, Xu, Z. Masliyah and J, In XXIV International Mineral Processing Congress, (2008).

  24. G.Y. Liu, X.L. Yang, and H. Zhong, Adv. Coll. Interface. Sci. 246, 181 (2017).

    Article  CAS  Google Scholar 

  25. X.W. Deng, B. Lv, G. Cheng, and Y. Lu, Physicochem. Probl. Miner. Process. 56, 504 (2020).

    Article  Google Scholar 

  26. B. Lv, Y. Fu, Z. Luo, B. Zhang, X. Qin, and X. Zhu, Powder Technol. 352, 126 (2019).

    Article  CAS  Google Scholar 

  27. X.W. Deng, J.T. Liu, Y.T. Wang, and Y.J. Cao, Int. J. Min. Sci. Technol. 23, 89 (2013).

    Article  Google Scholar 

  28. X.W. Deng, B.L. Xing, J.T. Liu, C.X. Zhang, C.L. Shi, and Y. Lu, Sep. Sci. Technol. 52, 1635 (2017).

    CAS  Google Scholar 

  29. B. Albijanic, Y. Zhou, B. Tadesse, L. Dyer, G. Xu, and X.L. Yang, Powder Technol. 338, 140 (2018).

    Article  CAS  Google Scholar 

  30. A. Eskanlou, M.R. Khalesi, M. Mirmogaddam, M.H. Chegeni, and B.V. Hassas, Sep. Sci. Technol. 54, 1795 (2019).

    Article  CAS  Google Scholar 

  31. C.W. Li, and H.J. Zhang, J. Ind. Eng. Chem. 106, 37 (2022).

    Article  CAS  Google Scholar 

  32. M. Zhang, P. Li, W. Yao, Z. Xu, and R. Fan, Colloids Surfaces A: Physicochem. Eng. Aspects 638, 128296 (2022).

    Article  CAS  Google Scholar 

  33. D.I. Verrelli, P.T.L. Koh, and A.V. Nguyen, Chem. Eng. Sci. 66, 5910 (2011).

    Article  CAS  Google Scholar 

  34. G.M. Evans, E. Doroodchi, G.L. Lane, P.T.L. Koh, and M.P. Schwarz, Chem. Eng. Res. Des. 86, 1350 (2008).

    Article  CAS  Google Scholar 

  35. J.H. Saavedra, S.M. Acuna, and P.G. Toledo, J. Colloid Interface Sci. 410, 188 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  36. P. Attard, Adv. Colloid Interface Sci. 104, 75 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. E. Dressaire, R. Bee, D.C. Bell, A. Lips, and H.A. Stone, Science 320, 1198 (2008).

    Article  ADS  CAS  PubMed  Google Scholar 

  38. G.H. Luttrell, and R.H. Yoon, J. Colloid Interface Sci. 154, 129 (1992).

    Article  ADS  CAS  Google Scholar 

  39. F.Y. Ma, D.P. Tao, Y.J. Tao, and S.Y. Liu, Int. J. Min. Sci. Technol. 31, 1063 (2021).

    Article  CAS  Google Scholar 

  40. H.S. Hu, M. Li, L.L. Li, and X.X. Tao, Int. J. Min. Sci. Technol. 30, 217 (2020).

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This study was funded by the Open Foundation of State Key Laboratory of Mineral Processing (BGRIMM-KJSKL-2022-18).

Author information

Authors and Affiliations

Authors

Contributions

Data curation, Xiaowei Deng, Le Chen and Bo Lv; Formal analysis, Xiaowei Deng and Jinwen Wu; Funding acquisition, Xiaowei Deng and Chaojun Fang; Investigation, Xiaowei Deng, Jinwen Wu and Bo Lv; Methodology, Xiaowei Deng and Jinwen Wu; Resources, Xiaowei Deng and Chaojun Fang; Software, Bo Lv and Chaojun Fang; Supervision, Xiaowei Deng and Chaojun Fang; Visualization, Bo Lv and Le Chen; Writing–original draft, Xiaowei Deng; Writing–review and editing, Xiaowei Deng and Chaojun Fang.

Corresponding author

Correspondence to Xiaowei Deng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, X., Chen, L., Wu, J. et al. Study on the Mechanism of Nanobubble-Coated Flake Graphite Ore Flotation in Short Circuits. JOM 76, 1984–1993 (2024). https://doi.org/10.1007/s11837-024-06411-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-024-06411-x

Navigation