Skip to main content
Log in

A Defect Data Compensation Model for Infrared Thermal Imaging Based on Bi-LSTM with Attention Mechanism

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The infrared thermal imager presents unique advantages in plate fault detection and prediction. However, during the data collection process, three abnormal conditions can result in anomalies and defects in the temporal data. To address this, a defect data compensation model based on bidirectional LSTM is proposed in this paper. The average gray value (AGV) of the plate in the infrared image is employed to represent the working state of the plate, serialized into time series data. To tackle the abnormality and defect issues in the sequential data, four methods are employed to complete the sequential data. Leveraging the strong correlation among time series data, this paper integrates a bidirectional LSTM with attention mechanism (Bi-AM-LSTM) to establish a defect data compensation model. This model compensates for abnormal and defective data, effectively enhancing the reliability and integrity of time series data. Experimental results demonstrate that the model achieves better training results when using the method of replacing the original value with the B-channel value in the RGB three channel. Moreover, when compared with other models, the proposed model exhibits the most effective data compensation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The data that support the findings of this study are available upon reasonable request from the authors.

References

  1. L. Ding, J. Cheng, T. Wang, J. Zhao, C. Chen, and Y. Niu, Miner. Eng. 135, 21 (2019).

    Article  Google Scholar 

  2. M. Moats and M. Free, JOM 59, 34 https://doi.org/10.1007/s11837-007-0128-y (2007).

    Article  Google Scholar 

  3. P.E. Aqueveque, E.P. Wiechmann, and R.P. Burgos, In 2007 IEEE Industry Applications Annual Meeting (2009), pp 1225–1231.

  4. A.S. Morales, E.P. Wiechmann, P. Aqueveque, and E. Pino, In Industry Applications Society Meeting (2010).

  5. X. Zhang, J. Saniie, and A. Heifetz, JOM 72, 4244 https://doi.org/10.1007/s11837-020-04428-6 (2020).

    Article  Google Scholar 

  6. G. Zhou, In 2020 International Conference on Computer Communication and Network Security (CCNS) (2020), pp 178–183.

  7. V. Naidoo and S. Du, Electronics. https://doi.org/10.3390/electronics11213465 (2022).

    Article  Google Scholar 

  8. H.R. Kwon and P.K. Kim, Information 12, 341 https://doi.org/10.3390/info12090341 (2021).

    Article  Google Scholar 

  9. S. Jahandari and D. Materassi, In 2017 American Control Conference (ACC) (2017), pp 1085–1090.

  10. K. Greff, R.K. Srivastava, J. Koutník, B.R. Steunebrink, and J. Schmidhuber, IEEE Trans. Neural Netw. Learn. Syst. 28, 2222–2232 https://doi.org/10.1109/TNNLS.2016.2582924 (2017).

    Article  MathSciNet  Google Scholar 

  11. T.N. Sainath, O. Vinyals, A. Senior, and H. Sak, In 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2015), pp 4580–4584.

  12. J. Schmidhuber, Neural Netw. 61, 85 https://doi.org/10.1016/j.neunet.2014.09.003 (2015).

    Article  Google Scholar 

  13. J.W. Belmont and R.A. Gibbs, Am. J. Pharm. 4, 253 https://doi.org/10.2165/00129785-200404040-00005 (2004).

    Article  Google Scholar 

  14. J. Yue, W. Zhao, S. Mao, and H. Liu, Remote Sens. Lett. 6, 468 https://doi.org/10.1080/2150704X.2015.1047045 (2015).

    Article  Google Scholar 

  15. A. Kumar, J. Kim, D. Lyndon, M. Fulham, and D. Feng, IEEE J. Biomed. Health Inform. 21, 31 https://doi.org/10.1109/JBHI.2016.2635663 (2017).

    Article  Google Scholar 

  16. D.W. Otter, J.R. Medina, and J.K. Kalita, IEEE Trans. Neural Netw. Learn. Syst. 32, 604 https://doi.org/10.1109/TNNLS.2020.2979670 (2021).

    Article  MathSciNet  Google Scholar 

  17. S. Wu, K. Roberts, S. Datta, J. Du, Z. Ji, Y. Si, S. Soni, Q. Wang, Q. Wei, Y. Xiang, B. Zhao, and H. Xu, J. Am. Med. Inform. Assoc. 27, 457 https://doi.org/10.1093/jamia/ocz200 (2020).

    Article  Google Scholar 

  18. S. Ren, K. He, R. Girshick, and J. Sun, IEEE Trans. Pattern Anal. Mach. Intell. 39, 1137 https://doi.org/10.1109/TPAMI.2016.2577031 (2017).

    Article  Google Scholar 

  19. L. Huang, C. Chen, J. Yun, Y. Sun, J. Tian, Z. Hao, H. Yu, and H. Ma, Front. Neurorobotics 16, 881021 https://doi.org/10.3389/fnbot.2022.881021 (2022).

    Article  Google Scholar 

  20. P. Zhang, J. Xue, C. Lan, W. Zeng, Z. Gao, and N. Zheng, IEEE Trans. Image Process. https://doi.org/10.1109/TIP.2019.2937724 (2019).

    Article  Google Scholar 

  21. Y. Bengio, P. Simard, and P. Frasconi, IEEE Trans. Neural Netw. 5, 157 https://doi.org/10.1109/72.279181 (1994).

    Article  Google Scholar 

  22. Y. Yu, X. Si, C. Hu, and J. Zhang, Neural Comput. 31, 1235 https://doi.org/10.1162/neco_a_01199 (2019).

    Article  MathSciNet  Google Scholar 

  23. D. Monner and J.A. Reggia, Neural Netw. 25, 70 https://doi.org/10.1016/j.neunet.2011.07.003 (2012).

    Article  Google Scholar 

  24. K. Wang, C. Ma, Y. Qiao, X. Lu, and S. Dong, Phys. A Stat. Mech. Appl. 583, 126293 (2021).

    Article  Google Scholar 

  25. L. Gao, Z. Guo, H. Zhang, X. Xu, and H.T. Shen, IEEE Trans. Multimed. 19, 2045 (2017).

    Article  Google Scholar 

  26. X. Ran, Z. Shan, Y. Fang, and C. Lin, Sensors 19, 861 (2019).

    Article  Google Scholar 

  27. V.K. Jeevitha and M. Hemalatha, In 2020 International Conference for Emerging Technology (INCET), (2020).

  28. H. Choi, K. Cho, and Y. Bengio, Neurocomputing 284, 171–176 (2018).

    Article  Google Scholar 

  29. F. Shahid, A. Zameer, and M. Muneeb, Chaos Solitons Fract. 140, 110212 https://doi.org/10.1016/j.chaos.2020.110212 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported in part by the National Natural Science Foundation of China (Grant No. 92167105) and in part by the Project of State Key Laboratory of High-Performance Complex Manufacturing, Central South University (Grant No. ZZYJKT2022-14).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Can Zhou.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, F., Peng, L., Zhu, H. et al. A Defect Data Compensation Model for Infrared Thermal Imaging Based on Bi-LSTM with Attention Mechanism. JOM 76, 3028–3038 (2024). https://doi.org/10.1007/s11837-024-06408-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-024-06408-6

Navigation