Skip to main content
Log in

CeO\(_x\) Elastic Properties: An In Situ Nanocompression Study in Environmental Transmission Electron Microscopy (ETEM)

  • EUROMAT23: Micro- and Nano-mechanics—Characterization and Modelling
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The ability to have predictive behavior of nanoparticles during bottom-up fabrication requires a fundamental understanding of their mechanical properties, often differing from their bulk counterparts because of the dramatic difference in grain size and free surfaces. Here, a series of in situ nanocompression experiments is performed on cerium oxide nanocubes in an environmental transmission electron microscope, in which the operating conditions of electron dose and gaseous environment are changed. This leads to either oxidation or reduction of the nanoparticles in situ. Utilizing the same nanoparticle under different oxidative states allows a direct comparison of the mechanical property changes. The elastic properties of CeO\(_x\) nanocubes, \(1.5< x < 2\), are compared to the results from a DFT + U simulation. The trends from the two treatments are in general agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. G. Bonnefont, G. Fantozzi, S. Trombert, and L. Bonneau, Ceram. Int. 38(1), 131–140 https://doi.org/10.1016/j.ceramint.2011.06.045 (2012).

    Article  Google Scholar 

  2. J. Li, J. Cho, J. Ding, H. Charalambous, S. Xue, H. Wang, X.L. Phuah, J. Jian, X. Wang, C. Ophus, T. Tsakalakos, R.E. García, A.K. Mukherjee, N. Bernstein, C.S. Hellberg, H. Wang, and X. Zhang, Sci. Adv. 5(9), 5519 https://doi.org/10.1126/sciadv.aaw5519 (2019).

    Article  Google Scholar 

  3. L. Alekseeva, A. Nokhrin, M. Boldin, E. Lantsev, A. Orlova, V. Chuvil’deev, and N. Sakharov, J. Nucl. Mater. 539, 152225 https://doi.org/10.1016/j.jnucmat.2020.152225 (2020).

    Article  Google Scholar 

  4. G. Liu, X. Zhang, X. Chen, Y. He, L. Cheng, M. Huo, J. Yin, F. Hao, S. Chen, P. Wang, S. Yi, L. Wan, Z. Mao, Z. Chen, X. Wang, Z. Cao, and J. Lu, Mater. Sci. Eng. R. Rep. 145, 100596 https://doi.org/10.1016/j.mser.2020.100596 (2021).

    Article  Google Scholar 

  5. A. Bandyopadhyay, K.D. Traxel, and S. Bose, Mater. Sci. Eng. R. Rep. 145, 100609 https://doi.org/10.1016/j.mser.2021.100609 (2021).

    Article  Google Scholar 

  6. X. Hao, A. Yoko, C. Chen, K. Inoue, M. Saito, G. Seong, S. Takami, T. Adschiri, and Y. Ikuhara, Small 14(42), 1802915 https://doi.org/10.1002/smll.201802915 (2018).

    Article  Google Scholar 

  7. T. Lian, L. Ju, S. Jun, M. Evan, and S. Zhi-Wei, Sci. Rep. 3, 2113 https://doi.org/10.1038/srep02113 (2013).

    Article  Google Scholar 

  8. P.A. Crozier, and T.W. Hansen, MRS Bull. 40(1), 38–45 https://doi.org/10.1557/mrs.2014.304 (2015).

    Article  Google Scholar 

  9. T.X.T. Sayle, M. Cantoni, U.M. Bhatta, S.C. Parker, S.R. Hall, G. Möbus, M. Molinari, D. Reid, S. Seal, and D.C. Sayle, Chem. Mater. 24(10), 1811–1821 https://doi.org/10.1021/cm3003436 (2012).

    Article  Google Scholar 

  10. M. Bugnet, S.H. Overbury, Z.L. Wu, and T. Epicier, Nano Lett. 17(12), 7652–7658 https://doi.org/10.1021/acs.nanolett.7b03680. (PMID: 29166035) (2017).

    Article  Google Scholar 

  11. Q. Yu, M. Legros, and A.M. Minor, MRS Bull. 40(1), 62–70 https://doi.org/10.1557/mrs.2014.306 (2015).

    Article  Google Scholar 

  12. J. Deneen, W.M. Mook, A. Minor, W.W. Gerberich, and C. Barry Carter, J. Mater. Sci. 41(14), 4477–4483 https://doi.org/10.1007/s10853-006-0085-9 (2006).

    Article  Google Scholar 

  13. J.D. Nowak, W.M. Mook, A.M. Minor, W.W. Gerberich, and C.B. Carter, Philos. Mag. 87(1), 29–37 https://doi.org/10.1080/14786430600876585 (2007).

    Article  Google Scholar 

  14. W.M. Mook, J.D. Nowak, C.R. Perrey, C.B. Carter, R. Mukherjee, S.L. Girshick, P.H. McMurry, and W.W. Gerberich, Phys. Rev. B 75, 214112 https://doi.org/10.1103/PhysRevB.75.214112 (2007).

    Article  Google Scholar 

  15. Z.W. Shan, G. Adesso, A. Cabot, M.P. Sherburne, S.A. Syed Asif, O.L. Warren, D.C. Chrzan, A.M. Minor, and A.P. Alivisatos, Nat. Mater. 7(12), 947–952 https://doi.org/10.1038/nmat2295 (2008).

    Article  Google Scholar 

  16. K. Zheng, C. Wang, Y.-Q. Cheng, Y. Yue, X. Han, Z. Zhang, Z. Shan, S.X. Mao, M. Ye, Y. Yin, and E. Ma, Nat. Commun. 1(1), 24 https://doi.org/10.1038/ncomms1021 (2010).

    Article  Google Scholar 

  17. K.L. Firestein, D.G. Kvashnin, A.M. Kovalskii, Z.I. Popov, P.B. Sorokin, D.V. Golberg, and D.V. Shtansky, Nanoscale 10, 8099–8105 https://doi.org/10.1039/C8NR00857D (2018).

    Article  Google Scholar 

  18. I.Z. Jenei, F. Dassenoy, T. Epicier, A. Khajeh, A. Martini, D. Uy, H. Ghaednia, and A. Gangopadhyay, Nanotechnology 29(8), 085703 https://doi.org/10.1088/1361-6528/aaa2aa (2018).

    Article  Google Scholar 

  19. W. Yang, J. Yang, Y. Dong, S. Mao, Z. Gao, Z. Yue, S.J. Dillon, H. Xu, and B. Xu, Carbon 137, 411–418 https://doi.org/10.1016/j.carbon.2018.05.047 (2018).

    Article  Google Scholar 

  20. S.-D. Kim, G.-T. Hwang, K. Song, C.K. Jeong, K.-I. Park, J. Jang, K.-H. Kim, J. Ryu, and S.-Y. Choi, Nano Energy 58, 78–84 https://doi.org/10.1016/j.nanoen.2018.12.096 (2019).

    Article  Google Scholar 

  21. M.T. Kiani, C.M. Barr, S. Xu, D. Doan, Z. Wang, A. Parakh, K. Hattar, and X.W. Gu, Nano Lett. 20(9), 6481–6487 https://doi.org/10.1021/acs.nanolett.0c02177. (PMID: 32786936) (2020).

    Article  Google Scholar 

  22. A.V. Bondarev, A. Fraile, T. Polcar, and D.V. Shtansky, Tribol. Int. 151, 106493 https://doi.org/10.1016/j.triboint.2020.106493 (2020).

    Article  Google Scholar 

  23. E. Calvié, L. Joly-Pottuz, C. Esnouf, P. Clément, V. Garnier, J. Chevalier, Y. Jorand, A. Malchère, T. Epicier, and K. Masenelli-Varlot, J. Eur. Ceram. Soc. 32(10), 2067–2071 https://doi.org/10.1016/j.jeurceramsoc.2012.02.029 (2012).

    Article  Google Scholar 

  24. E. Calvié, J. Réthoré, L. Joly-Pottuz, S. Meille, J. Chevalier, V. Garnier, Y. Jorand, C. Esnouf, T. Epicier, J.B. Quirk, and K. Masenelli-Varlot, Mater. Lett. 119, 107–110 https://doi.org/10.1016/j.matlet.2014.01.002 (2014).

    Article  Google Scholar 

  25. S. Lee, J. Im, Y. Yoo, E. Bitzek, D. Kiener, G. Richter, B. Kim, and S.H. Oh, Nat. Commun. 5(1), 3033 https://doi.org/10.1038/ncomms4033 (2014).

    Article  Google Scholar 

  26. I. Issa, J. Amodeo, J. Réthoré, L. Joly-Pottuz, C. Esnouf, J. Morthomas, M. Perez, J. Chevalier, and K. Masenelli-Varlot, Acta Mater. 86, 295–304 https://doi.org/10.1016/j.actamat.2014.12.001 (2015).

    Article  Google Scholar 

  27. D.J. Smith, M.R. McCartney, and L.A. Bursill, Ultramicroscopy 23(3), 299–303 https://doi.org/10.1016/0304-3991(87)90239-7 (1987).

    Article  Google Scholar 

  28. D. Su, Anal. Bioanal. Chem. 374(4), 732–735 https://doi.org/10.1007/s00216-002-1377-9 (2002).

    Article  Google Scholar 

  29. D. Stauffer, S. Bhowmick, R. Major, O.L. Warren, and S.A. Syed Asif, Microsc. Microanal. 20(S3), 1544–1545 https://doi.org/10.1017/S1431927614009453 (2014).

    Article  Google Scholar 

  30. I. Issa, L. Joly-Pottuz, J. Réthoré, C. Esnouf, T. Douillard, V. Garnier, J. Chevalier, S. Le Floch, D. Machon, and K. Masenelli-Varlot, Acta Mater. 150, 308–316 https://doi.org/10.1016/j.actamat.2018.03.023 (2018).

    Article  Google Scholar 

  31. D.D. Stauffer, A. Beaber, A. Wagner, O. Ugurlu, J. Nowak, K. Andre Mkhoyan, S. Girshick, and W. Gerberich, Acta Mater. 60(6), 2471–2478 https://doi.org/10.1016/j.actamat.2011.10.045 (2012).

    Article  Google Scholar 

  32. Z. Wu, A.K.P. Mann, M. Li, and S.H. Overbury, J. Phys. Chem. C 119(13), 7340–7350 https://doi.org/10.1021/acs.jpcc.5b00859 (2015).

    Article  Google Scholar 

  33. A. Trovarelli, Catal. Rev. 38(4), 439–520 https://doi.org/10.1080/01614949608006464 (1996).

    Article  Google Scholar 

  34. R.D. Monte, and J. Kašpar, Top. Catal. 28(1), 47–57 https://doi.org/10.1023/B:TOCA.0000024333.08447.f7 (2004).

    Article  Google Scholar 

  35. A. Trovarelli, P. Fornasiero, Catalysis by Ceria and Related Materials, 2nd edn. Imperial College Press (2013). https://www.worldscientific.com/doi/abs/10.1142/p870

  36. C. Sun, H. Li, and L. Chen, Energy Environ. Sci. 5, 8475–8505 https://doi.org/10.1039/C2EE22310D (2012).

    Article  Google Scholar 

  37. T. Montini, M. Melchionna, M. Monai, and P. Fornasiero, Chem. Rev. 116(10), 5987–6041 https://doi.org/10.1021/acs.chemrev.5b00603. (PMID: 27120134) (2016).

    Article  Google Scholar 

  38. A. Salerno, T. Devers, M.-A. Bolzinger, J. Pelletier, D. Josse, and S. Briançon, Chem. Biol. Interact. 267, 57–66 https://doi.org/10.1016/j.cbi.2016.04.035. (First international conference on CBRN Research and Innovation) (2017).

    Article  Google Scholar 

  39. L.A.J. Garvie, and P.R. Buseck, J. Phys. Chem. Solids 60(12), 1943–1947 https://doi.org/10.1016/S0022-3697(99)00218-8 (1999).

    Article  Google Scholar 

  40. G. Möbus, Z. Saghi, D.C. Sayle, U.M. Bhatta, A. Stringfellow, and T.X.T. Sayle, Adv. Funct. Mater. 21(11), 1971–1976 https://doi.org/10.1002/adfm.201002135 (2011).

    Article  Google Scholar 

  41. S. Turner, S. Lazar, B. Freitag, R. Egoavil, J. Verbeeck, S. Put, Y. Strauven, and G. Van Tendeloo, Nanoscale 3, 3385–3390 https://doi.org/10.1039/C1NR10510H (2011).

    Article  Google Scholar 

  42. Y. Lin, Z. Wu, J. Wen, K.R. Poeppelmeier, and L.D. Marks, Nano Lett. 14(1), 191–196 https://doi.org/10.1021/nl403713b. (PMID: 24295383) (2014).

    Article  Google Scholar 

  43. A.C. Johnston-Peck, J.S. DuChene, A.D. Roberts, W.D. Wei, and A.A. Herzing, Ultramicroscopy 170, 1–9 https://doi.org/10.1016/j.ultramic.2016.07.002 (2016).

    Article  Google Scholar 

  44. S. Ahmed, T.T. Ahmed, M. O’Grady, S. Nakahara, and D.N. Buckley, J. Appl. Phys. 103(7), 073506 https://doi.org/10.1063/1.2890995 (2008).

    Article  Google Scholar 

  45. V.I. Anisimov, J. Zaanen, and O.K. Andersen, Phys. Rev. B 44, 943–954 https://doi.org/10.1103/PhysRevB.44.943 (1991).

    Article  Google Scholar 

  46. S.L. Dudarev, G.A. Botton, S.Y. Savrasov, C.J. Humphreys, and A.P. Sutton, Phys. Rev. B 57, 1505–1509 https://doi.org/10.1103/PhysRevB.57.1505 (1998).

    Article  Google Scholar 

  47. S. Fabris, S. Gironcoli, S. Baroni, G. Vicario, and G. Balducci, Phys. Rev. B 71, 041102 https://doi.org/10.1103/PhysRevB.71.041102 (2005).

    Article  Google Scholar 

  48. D.A. Andersson, S.I. Simak, B. Johansson, I.A. Abrikosov, and N.V. Skorodumova, Phys. Rev. B 75, 035109 https://doi.org/10.1103/PhysRevB.75.035109 (2007).

    Article  Google Scholar 

  49. M. Huang, and S. Fabris, J. Phys. Chem. C 112(23), 8643–8648 https://doi.org/10.1021/jp709898r (2008).

    Article  Google Scholar 

  50. Z. Wu, M. Li, J. Howe, H.M.I. Meyer, and S.H. Overbury, Langmuir 26(21), 16595–16606 https://doi.org/10.1021/la101723w. (PMID: 20617854) (2010).

    Article  Google Scholar 

  51. Z.-A. Qiao, Z. Wu, and S. Dai, ChemSusChem 6(10), 1821–1833 (2013).

    Article  Google Scholar 

  52. I. Trenque, G.C. Magnano, M.A. Bolzinger, L. Roiban, F. Chaput, I. Pitault, S. Briançon, T. Devers, K. Masenelli-Varlot, M. Bugnet, and D. Amans, Phys. Chem. Chem. Phys. 21, 5455–5465 https://doi.org/10.1039/C9CP00179D (2019).

    Article  Google Scholar 

  53. R.F. Egerton, P. Li, and M. Malac, Micron 35(6), 399–409 https://doi.org/10.1016/j.micron.2004.02.003. (International Wuhan Symposium on Advanced Electron Microscopy) (2004).

    Article  Google Scholar 

  54. H. Guo, M.I. Khan, C. Cheng, W. Fan, C. Dames, J. Wu, and A.M. Minor, Nat. Commun. 5, 4986 https://doi.org/10.1038/ncomms5986 (2014).

    Article  Google Scholar 

  55. G. Kresse, and J. Furthmüller, Phys. Rev. B 54, 11169 https://doi.org/10.1103/PhysRevB.54.11169 (1996).

    Article  Google Scholar 

  56. G. Kresse, and D. Joubert, Phys. Rev. B 59, 1758 https://doi.org/10.1103/PhysRevB.59.1758 (1999).

    Article  Google Scholar 

  57. P.E. Blöchl, Phys. Rev. B 50, 17953 https://doi.org/10.1103/PhysRevB.50.17953 (1994).

    Article  Google Scholar 

  58. J.P. Perdew, and A. Zunger, Phys. Rev. B 23(10), 5048 (1981).

    Article  Google Scholar 

  59. D.M. Ceperley, and B.J. Alder, Phys. Rev. Lett. 45(7), 566 (1980).

    Article  Google Scholar 

  60. J.L.F. Da Silva, Phys. Rev. B 76, 193108 https://doi.org/10.1103/PhysRevB.76.193108 (2007).

    Article  Google Scholar 

  61. E.A. Kümmerle, and G. Heger, J. Solid State Chem. 147(2), 485–500 https://doi.org/10.1006/jssc.1999.8403 (1999).

    Article  Google Scholar 

  62. Q. Li, G. Hua, H. Lu, B. Yu, and D.Y. Li, JOM 70(7), 1130–1135 https://doi.org/10.1007/s11837-018-2891-3 (2018).

    Article  Google Scholar 

  63. H.J. Monkhorst, and J.D. Pack, Phys. Rev. B 13(12), 5188 (1976).

    Article  MathSciNet  Google Scholar 

  64. H. Bärnighausen, and G. Schiller, J. Less Common Met. 110(1–2), 385–390 (1985).

    Article  Google Scholar 

  65. L. Eyring, Handb. Phys. Chem. Rare Earths 3, 337–399 (1979).

    Article  Google Scholar 

  66. G.-Y. Adachi, and N. Imanaka, Chem. Rev. 98(4), 1479–1514 https://doi.org/10.1021/cr940055h (1998).

    Article  Google Scholar 

  67. K. Suzuki, M. Kato, T. Sunaoshi, H. Uno, U. Carvajal-Nunez, A.T. Nelson, and K.J. McClellan, J. Am. Ceram. Soc. 102(4), 1994–2008 https://doi.org/10.1111/jace.16055 (2019).

    Article  Google Scholar 

  68. O. Kraynis, I. Lubomirsky, and T. Livneh, J. Phys. Chem. C 123(39), 24111–24117 (2019).

    Article  Google Scholar 

  69. L. Gerward, J.S. Olsen, L. Petit, G. Vaitheeswaran, V. Kanchana, and A. Svane, J. Alloy. Compd. 400(1–2), 56–61 (2005).

    Article  Google Scholar 

  70. S.J. Duclos, Y.K. Vohra, A.L. Ruoff, A. Jayaraman, and G. Espinosa, Phys. Rev. B 38(11), 7755 (1988).

    Article  Google Scholar 

  71. L. Gerward, and J.S. Olsen, Powder Diffr. 8(2), 127–129 (1993).

    Article  Google Scholar 

  72. K. Clausen, W. Hayes, J.E. Macdonald, R. Osborn, P.G. Schnabel, M.T. Hutchings, and A. Magerl, J. Chem. Soc. Faraday Trans. Mol. Chem. Phys. 83(7), 1109–1112 (1987)

  73. J. Amodeo, and L. Pizzagalli, C R Phys. 22(S3), 35–66 https://doi.org/10.5802/crphys.70 (2021).

    Article  Google Scholar 

  74. R. Soler, J.M. Molina-Aldareguia, J. Segurado, J. Llorca, R.I. Merino, and V.M. Orera, Int. J. Plast 36, 50–63 https://doi.org/10.1016/j.ijplas.2012.03.005 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Consortium Lyon Saint-Etienne de Microscopie (CLYM) for access to the microscope.

Funding

This work was funded by the Labex IMust (project NANODEF), ANR (project ANR-18-CE42-0009) and the Grand Équipement National de Calcul Intensif (GENCI) (Jean Zay machine, grant no. A0110810637).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karine Masenelli-Varlot.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary information:

This article has accompanying supplementary material. (pdf 372KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joly-Pottuz, L., Zhang, R., Albaret, T. et al. CeO\(_x\) Elastic Properties: An In Situ Nanocompression Study in Environmental Transmission Electron Microscopy (ETEM). JOM 76, 2326–2335 (2024). https://doi.org/10.1007/s11837-024-06397-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-024-06397-6

Navigation