Skip to main content
Log in

Study on the Dynamic Instantaneous Precipitation of ZK60-T4 Magnesium Alloy Under High Strain-Rate Loading

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The commercial ZK60 magnesium alloy processed by solution heat treatment was dynamically loaded with a high strain rate by means of the split Hopkinson pressure bar (SHPB), and the dynamic instantaneous precipitation of second phases was investigated in the present work for the first time. TEM observations indicated that the β´1 with average length/diameter of 68.24–19.27 nm and β′2 phases with an average diameter of 16.15 nm precipitated within the dynamic deformation time of 180 μs at 3000 s−1. The adiabatic temperature rise generated by the dynamic deformation increases the atomic diffusion coefficient of solute atoms, which contributes to the generation of precipitated phases. Therefore, the precipitation of the second phases is thermodynamically feasible. It is also feasible to kinetically accelerate the rate of atomic diffusion to eventually lead to the instantaneous precipitation of the mass of the β′1 and β′2 phases, due to the combined effects of adiabatic temperature rise, high deviatoric stresses, high-density dislocation (vacancies) formed by the dynamic loading, and the initial supersaturated vacancies formed by the T4 treatment. Since the high-density dislocation was generated and the numerous reinforcing phases (β′1 and β′2) were precipitated in the matrix during deformation, the Vickers hardness values of alloy increased from 64.4 HV to 93.1 HV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data and code availability

The data underlying this article cannot be shared publicly for the privacy of individuals that participated in the study.

References

  1. P. Peng, J. She, Q. Yang, S. Long, A. Tang, J. Zhang, Q. Dai, and F. Pan, J. Alloy. Compd. 935, 168008 https://doi.org/10.1016/j.jallcom.2022.168008 (2023).

    Article  CAS  Google Scholar 

  2. Q. Chen, R. Chen, J. Su, Q. He, B. Tan, C. Xu, X. Huang, Q. Dai, and J. Lu, J. Magn. Alloys 10, 2384–2397 https://doi.org/10.1016/j.jma.2022.09.001 (2022).

    Article  CAS  Google Scholar 

  3. Z.Z. Jin, M. Zha, S.Q. Wang, S.C. Wang, C. Wang, H.L. Jia, and H.Y. Wang, J. Magn. Alloys 10, 1191–1206 https://doi.org/10.1016/j.jma.2022.04.002 (2022).

    Article  CAS  Google Scholar 

  4. P.S. Ghosh, A. Sen, S. Chattopadhyaya, S. Sharma, J. Singh, C. Li, G. Królczyk, and S. Rajkumar, Heliyon 8, e11710 https://doi.org/10.1016/j.heliyon.2022.e11710 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. P. Sekar, S. Narendranath, and V. Desai, J. Magn. Alloys 9, 1147–1163 https://doi.org/10.1016/j.jma.2020.11.001 (2021).

    Article  CAS  Google Scholar 

  6. Y. Li, H. Jahr, J. Zhou, and A.A. Zadpoor, Acta Biomater. 115, 29–50 https://doi.org/10.1016/j.actbio.2020.08.018 (2020).

    Article  CAS  PubMed  Google Scholar 

  7. J. Liang, S. Wu, Z. Lei, Y. Chen, X. Zhang, B. Li, M. Jiang, and Y. Chen, Mater. Character. 194, 112361 https://doi.org/10.1016/j.matchar.2022.112361 (2022).

    Article  CAS  Google Scholar 

  8. J. Buha, J. Mater. Sci. Eng. A 492, 11–19 https://doi.org/10.1016/j.msea.2008.02.038 (2008).

    Article  CAS  Google Scholar 

  9. X. Gao, and J.F. Nie, Scripta Mater. 56, 645–648 https://doi.org/10.1016/j.scriptamat.2007.01.006 (2007).

    Article  CAS  Google Scholar 

  10. A. Malik, F. Nazeer, S.Z.H. Naqvi, J. Long, C. Li, Z. Yang, and Y. Huang, J. Market. Res. 16, 801–813 https://doi.org/10.1016/j.jmrt.2021.12.051 (2022).

    Article  CAS  Google Scholar 

  11. X. Xu, J. Zhang, H. Liu, Y. He, and W. Zhao, Mater. Sci. Eng. A. https://doi.org/10.1016/j.msea.2019.03.011 (2019).

    Article  Google Scholar 

  12. M.A. Basith, N.C. Reddy, S. Uppalapati, and S.P. Jani, Mater. Today Proc. 45, 1684–1690 https://doi.org/10.1016/j.matpr.2020.08.561 (2021).

    Article  Google Scholar 

  13. L. Shen, and Y. Liu, Int. J. Mater. Res. Technol. 160, 104077 https://doi.org/10.1016/j.ijimpeng.2021.104077 (2022).

    Article  Google Scholar 

  14. A.A. Luo, A.K. Sachdev, and D. Apelian, J. Mater. Process. Technol. 306, 117606 https://doi.org/10.1016/j.jmatprotec.2022.117606 (2022).

    Article  CAS  Google Scholar 

  15. J. Wang, L. Zhang, P. Jin, L. Chen, X. Yuan, and H. Ma, J. Alloy. Compd. 908, 164540 https://doi.org/10.1016/j.jallcom.2022.164540 (2022).

    Article  CAS  Google Scholar 

  16. L. Zhang, Mater. Sci. Eng., A 844, 143166 https://doi.org/10.1016/j.msea.2022.143166 (2022).

    Article  CAS  Google Scholar 

  17. W. Shi, S. Lu, J. Shen, B. Chen, J. Umeda, Q. Wei, K. Kondoh, and Y. Li, Mater. Sci. Eng., A 830, 142321 https://doi.org/10.1016/j.msea.2021.142321 (2022).

    Article  CAS  Google Scholar 

  18. Z. Zeng, M. Salehi, A. Kopp, S. Xu, M. Esmaily, and N. Birbilis, J. Magn. Alloys 10, 1511–1541 https://doi.org/10.1016/j.jma.2022.03.001 (2022).

    Article  CAS  Google Scholar 

  19. X. Liu, H. Yang, B. Zhu, Y. Wu, W. Liu, and C. Tang, J. Magn. Alloys. https://doi.org/10.1016/j.jma.2021.07.030 (2021).

    Article  Google Scholar 

  20. M. Du, L. Chen, Q. Fang, L. Yan, and X. Hu, Mater. Today Commun. 33, 104852 https://doi.org/10.1016/j.mtcomm.2022.104852 (2022).

    Article  CAS  Google Scholar 

  21. T. Ali, L. Wang, X. Cheng, H. Cheng, Y. Yang, A. Liu, X. Xu, Z. Zhou, Z. Ning, Z. Xu X. Min, J. Mater. Sci. Technol. Shenyang China 78 (2021) 238–246. https://doi.org/10.1016/j.jmst.2020.11.033.

  22. S. Kim, M.C. Jo, D.W. Suh, H.K. Kim, S.S. Sohn, and S. Lee, Mater. Sci. Eng., A 814, 141127 https://doi.org/10.1016/j.msea.2021.141127 (2021).

    Article  CAS  Google Scholar 

  23. S.J. Yang, and Y. Yang, Scripta Mater. 181, 115–120 https://doi.org/10.1016/j.scriptamat.2020.02.024 (2020).

    Article  CAS  Google Scholar 

  24. C. Genevois, D. Fabrègue, A. Deschamps, and W.J. Poole, Mater. Sci. Eng., A 441, 39–48 https://doi.org/10.1016/j.msea.2006.07.151 (2006).

    Article  CAS  Google Scholar 

  25. A. Deschamps, G. Fribourg, Y. Bréchet, J.L. Chemin, and C.R. Hutchinson, Acta Mater. 60, 1905–1916 https://doi.org/10.1016/j.actamat.2012.01.002 (2012).

    Article  ADS  CAS  Google Scholar 

  26. G. Sha, Y.B. Wang, X.Z. Liao, Z.C. Duan, S.P. Ringer, and T.G. Langdon, Acta Mater. 57, 3123–3132 https://doi.org/10.1016/j.actamat.2009.03.017 (2009).

    Article  ADS  CAS  Google Scholar 

  27. S. Liu, S. Wang, L. Ye, Y. Deng, and X. Zhang, Mater. Sci. Eng., A 677, 203–210 https://doi.org/10.1016/j.msea.2016.09.047 (2016).

    Article  CAS  Google Scholar 

  28. D.T. Hong Hue, V.K. Tran, V.L. Nguyen, L. Van Lich, V.H. Dinh, T.G and Nguyen, Vacuum, 201 (2022) 111104. https://doi.org/10.1016/j.vacuum.2022.111104.

  29. M.A. Afifi, Y.C. Wang, and T.G. Langdon, Mater. Sci. Eng., A 784, 139287 https://doi.org/10.1016/j.msea.2020.139287 (2020).

    Article  CAS  Google Scholar 

  30. M.A. Khan, Y. Wang, M. Hamza, G. Yasin, M. Tabish, C. Feng, W.Q. Khan, T. Ahmad, W.B. Liao, and M.A. Afifi, Mater. Charact. 180, 111398 https://doi.org/10.1016/j.matchar.2021.111398 (2021).

    Article  CAS  Google Scholar 

  31. D. H. Li, Y. Yang, T. Xu, H.G. Zheng, Q. S. Zhu, Q. M, Zhang. Mater. Sci. Eng. A 527: 3529–3535 (2010)

  32. L. Jiang, Y. Yang, Z. Wang, and H. Hu, Mater. Sci. Eng., A 711, 317–324 https://doi.org/10.1016/j.msea.2017.10.111 (2018).

    Article  CAS  Google Scholar 

  33. Y. Yang, S.J. Yang, and L.H. Jiang, Mater. Charact. 156, 109840 https://doi.org/10.1016/j.matchar.2019.109840 (2019).

    Article  CAS  Google Scholar 

  34. S. Kim, M.C. Jo, T.W. Park, J. Ham, S.S. Sohn, and S. Lee, Mater. Sci. Eng., A 804, 140757 https://doi.org/10.1016/j.msea.2021.140757 (2021).

    Article  CAS  Google Scholar 

  35. T. Ye, Y. Wu, A. Liu, C. Xu, and L. Li, Vacuum 159, 37–44 https://doi.org/10.1016/j.vacuum.2018.10.013 (2019).

    Article  ADS  CAS  Google Scholar 

  36. Y. Yang, F. Jiang, B.M. Zhou, X.M. Li, H.G. Zheng, and Q.M. Zhang, Mater. Sci. Eng., A 528, 2787–2794 https://doi.org/10.1016/j.msea.2010.12.053 (2011).

    Article  CAS  Google Scholar 

  37. F. Zhang, Z. Liu, M. Yang, G. Su, R. Zhao, P. Mao, F. Wang, and S. Sun, Mater. Sci. Eng., A 771, 138571 https://doi.org/10.1016/j.msea.2019.138571 (2020).

    Article  CAS  Google Scholar 

  38. J. Liang, Z. Lei, Y. Chen, S. Wu, X. Chen, M. Jiang, and S. Cao, Mater. Sci. Eng., A 839, 142858 https://doi.org/10.1016/j.msea.2022.142858 (2022).

    Article  CAS  Google Scholar 

  39. P. Li, K. Yuan, W. Guo, R. Wang, L. Chen, M. Gao, and P. Du, J. Market. Res. 18, 637–657 https://doi.org/10.1016/j.jmrt.2022.02.121 (2022).

    Article  CAS  Google Scholar 

  40. X. Zhou, H. Yan, J. Chen, W. Xia, B. Su, L. Yu, W. Huang, and M. Song, J. Alloy. Compd. 819, 152961 https://doi.org/10.1016/j.jallcom.2019.152961 (2020).

    Article  CAS  Google Scholar 

  41. Z. Li, Z. Peng, Y. Qiu, K. Qi, Z. Chen, and X. Guo, J. Mater. Res. Technol. 9, 11201–11219 https://doi.org/10.1016/j.jmrt.2020.08.004 (2020).

    Article  CAS  Google Scholar 

  42. T. Zhang, H. Cui, X. Cui, H. Chen, E. Zhao, L. Chang, Y. Pan, R. Feng, S. Zhai, and S. Chai, J. Market. Res. 9, 133–141 https://doi.org/10.1016/j.jmrt.2019.10.038 (2020).

    Article  CAS  Google Scholar 

  43. W. Ren, R. Xin, J. Xu, B. Song, L. Zhang, and Q. Liu, J. Alloy. Compd. 792, 610–616 https://doi.org/10.1016/j.jallcom.2019.04.085 (2019).

    Article  CAS  Google Scholar 

  44. J.H. Cho, S.H. Han, H.T. Jeong, and S.H. Choi, J. Alloy. Compd. 743, 553–563 https://doi.org/10.1016/j.jallcom.2017.12.275 (2018).

    Article  CAS  Google Scholar 

  45. L. Tian, L. Liu, N. Hou, J. Zhou, W. Guo, Q. Yuan, F. Zaïri, and N. Ding, Mater. Today Commun. 26, 101708 https://doi.org/10.1016/j.mtcomm.2020.101708 (2021).

    Article  CAS  Google Scholar 

  46. C. Li, and Y.D. Yu, Mater. Sci. Eng., A 559, 22–28 https://doi.org/10.1016/j.msea.2012.06.065 (2013).

    Article  CAS  Google Scholar 

  47. M.A. Meyers, Dynamic Behavior of Materials (Wiley, New York, 1994), pp405–435.

    Book  Google Scholar 

  48. J.F. Xiao, Z.H. Nie, C.W. Tan, G. Zhou, R. Chen, M.R. Li, X.D. Yu, X.C. Zhao, S.X. Hui, W.J. Ye, and Y.T. Lee, Mater. Sci. Eng., A 751, 191–200 https://doi.org/10.1016/j.msea.2019.02.068 (2019).

    Article  CAS  Google Scholar 

  49. J. Xu, L. Huang, B. Xie, H. Su, and J. Li, J. Mater. Process. Technol. 303, 117516 https://doi.org/10.1016/j.jmatprotec.2022.117516 (2022).

    Article  CAS  Google Scholar 

  50. A. Malik, U.M. Chaudry, T. Yan, J. Long, C. Li, and Y. Wang, J. Alloy. Compd. 902, 163755 https://doi.org/10.1016/j.jallcom.2022.163755 (2022).

    Article  CAS  Google Scholar 

  51. Y. Yang, Z. Wang, and L.H. Jiang, J. Alloy. Compd. 705, 566–571 https://doi.org/10.1016/j.jallcom.2017.02.158 (2017).

    Article  CAS  Google Scholar 

  52. J.F. Nie, Metall. Mater. Trans. A 43, 3891–3939 https://doi.org/10.1007/s11661-012-1217-2 (2012).

    Article  CAS  Google Scholar 

  53. J. Ren, Y. Xu, X. Zhao, and P. Zhao, Mater. Sci. Eng., A 719, 178–191 https://doi.org/10.1016/j.msea.2018.02.019 (2018).

    Article  CAS  Google Scholar 

  54. L. Hua, P. Zhou, Y. Song, and Q. Sun, Mater Sci. Eng. B Adv. Function. Solid-State Mater. 282, 115751 https://doi.org/10.1016/j.mseb.2022.115751 (2022).

    Article  CAS  Google Scholar 

  55. R.A. Graham, Solids Under High-Pressure Shock Compression, Mechanics, Physics, and Chemistry (Springer, New York, NY, 1993), pp130–145.

    Book  Google Scholar 

  56. R.A. Graham, B. Morosin, E.L. Venturini, and M.J. Carr, Annu. Rev. Mater. Res. 16, 315–41 https://doi.org/10.1146/annurev.ms.16.080186.001531 (1986).

    Article  ADS  CAS  Google Scholar 

  57. H. Kressel, and N. Brown, J. Appl. Physiol. 38, 1618–1625 https://doi.org/10.1063/1.1709733 (1967).

    Article  ADS  CAS  Google Scholar 

  58. K.S. Reddy, Y. Govindaraj, and L. Neelakantan, Electrochim. Acta 439, 141727 https://doi.org/10.1016/j.electacta.2022.141727 (2023).

    Article  CAS  Google Scholar 

  59. G. Zhao, J. Zhang, S. Zhang, G. Wang, J. Han, and C. Zhang, J. Alloy. Compd. 935, 167987 https://doi.org/10.1016/j.jallcom.2022.167987 (2023).

    Article  CAS  Google Scholar 

  60. X. Xie, Z. Guo, J. Xiao, Z. Liang, S. Wei, W. Feng, Z. Zhao, and X. Liu, J. Market. Res. 22, 1961–1970 https://doi.org/10.1016/j.jmrt.2022.12.042 (2023).

    Article  CAS  Google Scholar 

  61. A. Deschamps, F. Bley, F. Livet, D. Fabregue, and L. David, Phil. Mag. 83, 677–692 https://doi.org/10.1080/0141861021000051091 (2003).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Nos. 51871243, 51574290), the Guangdong-Hong Kong-Macao Joint Laboratory for Neutron Scattering Science and Technology (HT-CSNS-DG-CD-0092/2021), the Open Fund of the Hubei Longzhong Laboratory (No. 2022KF-08), the Shock and Vibration of Engineering Materials and Structures Key Laboratory of Sichuan Province (No. 22kfgk06), the Hunan Provincial Natural Science Foundation of China (No. 2019JJ40381), and the State Key Laboratory of Precision Blasting and Hubei Key Laboratory of Blasting Engineering (No. PBSKL2022C01).

Author information

Authors and Affiliations

Authors

Contributions

YY: project administration, funding, acquisition, conceptualization, supervision, validation, writing - review & editing. YZ: investigation, provision of experimental materials, data curation, visualization, writing - original draft, formal analysis. LH: data curation, writing - review & editing. DL: validation. SW: project administration. YK: Project administration.

Corresponding author

Correspondence to Yang Yang.

Ethics declarations

Ethical approval

The manuscript is prepared as per the ethical standard of the journal.

Conflict of Interest

We declared that we have no conflicts of interest to this work, and we have no financial and personal relationships with other people or organizations.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Zhan, Y., Hu, L. et al. Study on the Dynamic Instantaneous Precipitation of ZK60-T4 Magnesium Alloy Under High Strain-Rate Loading. JOM 76, 2016–2026 (2024). https://doi.org/10.1007/s11837-024-06394-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-024-06394-9

Navigation