Skip to main content
Log in

Effects of the Extrusion Ratio on the Microstructure and Mechanical Properties of Columnar Network Structured TiBw/TA15 Composites

  • Deformation-influenced Microstructural Evolution of High-Temperature Alloys
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Novel columnar network structure TiB whisker-reinforced TA15 titanium alloy matrix composites (TiBw/TA15 composites) were successfully prepared by low-energy ball milling and subsequent powder compact extrusion process. Detailed investigation of microstructure evolution in TiBw/TA15 composites indicated that TiBw formed the two-dimensional network structure in the transversal section and the ‘parallel whisker wall’ structure in the longitudinal section, i.e., three-dimensional columnar network structure. The columnar network structure could refine the microstructure and strengthen the grain boundary of prior β grain; thus, the composites possessed excellent comprehensive mechanical properties. Compared with the TA15, the UTS of the TiBw/TA15 composites was increased by 8.6% (λ = 6). The dimension of the columnar network decreased with the increase of extrusion ratio. The mechanical property test results showed that with the increase of extrusion ratio, the tensile strength (from 1240 MPa to 1355 MPa) and hardness (407.5–446.7 HV) of the TiBw/TA15 composites increased, while the ductility (from 9.72% to 4.10%) decreased. However, when extrusion ratio was too large (λ = 17), the debonding of TiB/matrix interface was observed during the tensile test, and this phenomenon was not conducive to the plasticity of TiBw/TA15 composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. L.C. Zhang and L.Y. Chen, Adv. Eng. Mater. 21(4), 1801215 (2019).

    Article  MathSciNet  Google Scholar 

  2. Y. Wen, Y.Y. Wu, L. Hua, L.C. Xie, L.Q. Wang, L.C. Zhang, and W.J. Lu, Mater. Des. 206, 109760 (2021).

    Article  Google Scholar 

  3. Y.F. Han, H.Q. Duan, W.J. Lu, L.Q. Wang, and D. Zhang, Prog. Nat. Sci. 25(5), 453 (2015).

    Article  Google Scholar 

  4. H.L. Li, H.Y. Cao, H.B. Xia, K. Han, Z.Y. Wang, D. Wang, and Y.B. Lu, Mater Charact 206, 113391 (2023).

    Article  Google Scholar 

  5. J.B. Jin, S.F. Zhou, Y. Zhao, Q. Zhang, X.J. Wang, W. Li, D.C. Chen, and L.C. Zhang, Opt. Laser Technol. 134, 106644 (2021).

    Article  Google Scholar 

  6. S.C. Tjong and Y.W. Mai, Compos. Sci. Technol. 68, 583 (2008).

    Article  Google Scholar 

  7. C. Cai, S. He, L.F. Li, Q. Teng, B. Song, C.Z. Yan, Q.S. Wei, and Y.S. Shi, Compos. B Eng. 164, 546 (2019).

    Article  Google Scholar 

  8. X.Y. Wang, S.P. Li, Y.F. Han, G.F. Huang, J.W. Mao, and W.J. Lu, Scr. Mater. 196, 113758 (2021).

    Article  Google Scholar 

  9. D. Pan, X. Zhang, X.D. Hou, Y.F. Han, M.Q. Chu, B. Chen, L. Jia, K. Kondoh, and S.F. Li, Mater. Sci. Eng. A 799, 140137 (2021).

    Article  Google Scholar 

  10. H.T. Hu, L.J. Huang, L. Geng, C. Liu, and B. Wang, J. Alloys Compd. 582, 569 (2014).

    Article  Google Scholar 

  11. W. Chen, C.J. Boehlert, E.A. Payzant, and J.Y. Howe, Int. J. Fatigue 32, 627 (2010).

    Article  Google Scholar 

  12. Q. Wang, Z.H. Zhang, T.J. Su, X.W. Cheng, X.Y. Li, S.Z. Zhang, and J.Y. He, Mater. Sci. Eng. C 830, 142309 (2022).

    Article  Google Scholar 

  13. F.H. Chi, J.B. Hou, G.R. Cui, B. Zhong, W.Z. Chen, and W.C. Zhang, Surf. Interfaces 36, 102553 (2023).

    Article  Google Scholar 

  14. H.Y. Lu, D.L. Zhang, B. Gabbitas, F. Yang, and S. Matthews, J. Alloys Compd. 606, 262 (2014).

    Article  Google Scholar 

  15. Y. Yu, W.C. Zhang, W.Q. Dong, J.L. Yang, and Y.J. Feng, Mater. Sci. Eng. A 638, 38 (2015).

    Article  Google Scholar 

  16. G.F. Huang, X.L. Guo, Y.F. Han, L.Q. Wang, W.J. Lu, and D. Zhang, Mater. Sci. Eng. A 667, 317 (2016).

    Article  Google Scholar 

  17. Y.J. Feng, W.C. Zhang, G.R. Cui, J.P. Wu, and W.Z. Chen, J. Alloys Compd. 721, 383 (2017).

    Article  Google Scholar 

  18. G.F. Huang, Y.F. Han, X.L. Guo, D. Qiu, L.Q. Wang, W.J. Lu, and D. Zhang, Mater. Sci. Eng. A 688, 155 (2017).

    Article  Google Scholar 

  19. Y.J. Feng, Y.B. Lu, X.S. Liu, H.Y. Cao, W. Wang, J.L. Yang, W.Z. Chen, and G.R. Cui, Scr. Mater. 229, 115349 (2023).

    Article  Google Scholar 

  20. L.J. Huang, F.Y. Yang, H.T. Hu, X.D. Rong, L. Geng, and L.Z. Wu, Mater. Des. 51, 421 (2013).

    Article  Google Scholar 

  21. W.C. Zhang, Y.J. Feng, W.Z. Chen, and J.L. Yang, J. Alloys Compd. 693, 1116 (2017).

    Article  Google Scholar 

  22. W.C. Zhang, M.M. Wang, W.Z. Chen, Y.J. Feng, and Y. Yu, Mater. Des. 88, 471 (2015).

    Article  Google Scholar 

  23. Z. Fan and A.P. Miodownik, J. Mater. Sci. 29, 1127 (1994).

    Article  Google Scholar 

  24. S. Tamirisakandala, R.B. Bhat, J.S. Tiley, and D.B. Miracle, Scr. Mater. 53, 1421 (2005).

    Article  Google Scholar 

  25. J.H. Wang, X.L. Guo, J.N. Qin, D. Zhang, and W.J. Lu, Mater. Sci. Eng. A 628, 366 (2015).

    Article  Google Scholar 

  26. R.B. Bhat, S. Tamirisakandala, D.B. Miracle, and V.A. Ravi, Metall. Mater. Trans. A 36A, 845 (2005).

    Google Scholar 

  27. Y.J. Feng, W.C. Zhang, L. Zeng, G.R. Cui, and W.Z. Chen, Materials 10, 424 (2017).

    Article  Google Scholar 

  28. Z.C. Sun, X.Q. Wang, J. Zhang, and H. Yang, Mater. Sci. Eng. A 591, 18 (2014).

    Article  Google Scholar 

  29. Y. Yue, L.Y. Dai, H. Zhong, C.L. Tan, M.Z. Ma, X.Y. Zhang, and R.P. Liu, Mater. Sci. Eng. A 678, 286 (2016).

    Article  Google Scholar 

  30. M. Kato, T. Fujii, and S. Onaka, Mater. Sci. Eng. A 211, 95 (1996).

    Article  Google Scholar 

  31. D. Hill, R. Banerjee, D. Huber, J. Tiley, and H.L. Fraser, Scr. Mater. 52, 387 (2005).

    Article  Google Scholar 

  32. P. Nandwana, S. Nag, D. Hill, J. Tiley, H.L. Fraser, and R. Banerjee, Scr. Mater. 66, 598 (2012).

    Article  Google Scholar 

  33. I. Sen, S. Tamirisakandala, D.B. Miracle, and U. Ramamurty, Acta Mater. 55, 4983 (2007).

    Article  Google Scholar 

  34. N. Kang, H. Yuan, P. Coddet, Z.M. Ren, C. Bernage, H.L. Liao, and C. Coddet, Mater. Sci. Eng. C Mater. Biol. Appl. 70, 405 (2017).

    Article  Google Scholar 

  35. R.D. Doherty, D.A. Hughes, F.J. Humphreys, J.J. Jonas, D.J. Jensen, M.E. Kassner, W.E. King, T.R. McNelley, H.J. McQueen, and A.D. Rollett, Mater. Sci. Eng. A 238, 219 (1997).

    Article  Google Scholar 

  36. D. Liu, S.Q. Zhang, A. Li, and H.M. Wang, J. Alloys Compd. 485, 156 (2009).

    Article  Google Scholar 

  37. J.Q. Qi, H.W. Wang, C.M. Zou, and Z.J. Wei, Mater. Sci. Eng. A 553, 59 (2012).

    Article  Google Scholar 

  38. X.L. Guo, L.Q. Wang, M.M. Wang, J.N. Qin, D. Zhang, and W.J. Lu, Acta Mater. 60, 2656 (2012).

    Article  Google Scholar 

  39. Y.J. Feng, W.C. Zhang, G.R. Cui, W.Z. Chen, and Y. Yu, Mater. Sci. Eng. A 707, 40 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Natural Science Foundation of China (Grant No. 52305364), the Graduate Research and Innovation Projects of Jiangsu Province (Grant Nos. KYCX22_3636 and SJCX23_2073), Project Funded by China Postdoctoral Science Foundation (Grant No. 2023M741412) and Shandong Provincial Key Lab of Special Welding Technology, Harbin Institute of Technology at Weihai (Grant No. zk20230007).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yangju Feng or Guorong Cui.

Ethics declarations

Conflict of interest

The authors declare that they have no financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, Y., Lu, Y., Wang, W. et al. Effects of the Extrusion Ratio on the Microstructure and Mechanical Properties of Columnar Network Structured TiBw/TA15 Composites. JOM 76, 2231–2244 (2024). https://doi.org/10.1007/s11837-024-06380-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-024-06380-1

Navigation