Skip to main content
Log in

Hydride–Dehydride Processes and Behaviors for Ductile Refractory Complex Concentrated Alloys

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

To find an effective method for preparing low-H/O impurity pollution powders of refractory complex concentrated alloys (RCCAs) with decent plasticity levels, the hydride–dehydride process and behavior characteristics of Ti2ZrTa0.75 RCCA were investigated. After the hydrogenation process at a temperature of 600°C and a hydrogen pressure of 0.2 MPa for a time of 2 h, Ti2ZrTa0.75 RCCA transformed into M3H2 metal hydrides with hydrogen concentrations of 0.61 wt.% and then hydrogen-induced fragmentation. Meanwhile, fragmentary RCCAs have a low impurity oxygen content (0.0545 wt.%). Then, nearly spherical powders with average particle sizes of 4.5 μm were obtained by ball milling for 4 h. Finally, the dehydrogenation process at 450°C for 2 h reduced the hydrogen concentration in the Ti2ZrTa0.75 RCCA powder to 0.0074 wt.%, while the near-spherical shape and small particle size (D50 = 9.4 μm) were maintained, with the near-spherical shaped RCCA powders with BCC + HCP dual-phase structures. By fitting the hydrogenation and dehydrogenation kinetics curves, the hydrogenation and dehydrogenation behaviors of Ti2ZrTa0.75 RCCA were mainly controlled by the diffusion of hydrogen atoms. The results of this work proved that spherical Ti2ZrTa0.75 RCCA powder with low-H/O impurity pollution and a small size could be successfully prepared by the hydride–dehydride method. The hydride–dehydride method was thus an effective method for preparing low-H/O impurity pollution powder composed of RCCAs with decent plasticity levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. D.B. Miracle, and O.N. Senkov, Acta Mater. 122, 448 (2017).

    ADS  CAS  Google Scholar 

  2. O.N. Senkov, S. Gorsse, and D.B. Miracle, Acta Mater. 175, 394 (2019).

    ADS  CAS  Google Scholar 

  3. H.L. Huang, Y. Wu, J.Y. He, H. Wang, X.J. Liu, K. An, W. Wu, and Z.P. Lu, Adv. Mater. 29, 1 (2017).

    ADS  Google Scholar 

  4. M. Li, Z.H. Zhang, A.S. Thind, G.D. Ren, R. Mishra, and K.M. Flores, Acta Mater. 213, 116919 (2021).

    CAS  Google Scholar 

  5. O.N. Senkov, D.B. Miracle, and S.I. Rao, Mater. Sci. Eng. A 820, 141512 (2021).

    CAS  Google Scholar 

  6. H.W. Yao, J.W. Qiao, J.A. Hawk, H.F. Zhou, M.W. Chen, and M.C. Gao, J. Alloy. Compd. 696, 1139 (2017).

    CAS  Google Scholar 

  7. S. Zhang, Z. Wang, H.J. Yang, J.W. Qiao, Z.H. Wang, and Y.C. Wu, Intermetallics 121, 106699 (2020).

    CAS  Google Scholar 

  8. W. Guo, W. Dmowski, J.Y. Noh, P. Rack, P.K. Liaw, and T. Egami, Metall. Mater. Trans. A 44, 1994–1997 (2013).

    CAS  Google Scholar 

  9. L.R. Owen, E.J. Pickering, H.Y. Playford, H.J. Stone, M.G. Tucker, and N.G. Jones, Acta Mater. 122, 11 (2017).

    ADS  CAS  Google Scholar 

  10. Y. Yuan, Z. Yang, X. Liang, Z.F. Lei, H.L. Huang, H. Wang, X.J. Liu, K. An, W. Wu, and Z.P. Lu, Mater. Res. Lett. 7, 225 (2019).

    CAS  Google Scholar 

  11. Z.M. Li, K.G. Pradeep, Y. Deng, and D. Raabe, Nature 534, 227 (2016).

    ADS  CAS  PubMed  Google Scholar 

  12. H. Huang, Y. Wu, J. He, H. Wang, X. Liu, K. An, W. Wu, and Z. Lu, Adv. Mater. 29, 1701678 (2017).

    Google Scholar 

  13. J.P. Couzinié, O.N. Senkov, D.B. Miracle, and G. Dirras, Data Brief 21, 1622 (2018).

    PubMed  PubMed Central  Google Scholar 

  14. O.N. Senkov, D.B. Miracle, K.J. Chaput, and J.P. Couzinie, J. Mater. Res. 33, 3092 (2018).

    ADS  CAS  Google Scholar 

  15. K.R. Ren, H.Y. Liu, R. Chen, Y. Tang, B.Y. Guo, S. Li, J. Wang, R.X. Wang, and F.Y. Lu, Mater. Sci. Eng. A 827, 142074 (2021).

    CAS  Google Scholar 

  16. S. Li, J. Wang, J.Z. He, R.M. Xue, R.X. Wang, D. Niu, R. Chen, Y. Tang, and S.X. Bai, Intermetallics 159, 107912 (2023).

    CAS  Google Scholar 

  17. S. Shuang, Q. Yu, X. Gao, Q.F. He, J.Y. Zhang, S.Q. Shi, and Y. Yang, J. Mater. Sci. Technol. 109, 197 (2022).

    CAS  Google Scholar 

  18. Y.L. Chou, Y.C. Wang, J.W. Yeh, and H.C. Shih, Corros. Sci. 52, 3481 (2010).

    CAS  Google Scholar 

  19. M.A. Hemphill, T. Yuan, G.Y. Wang, J.W. Yeh, C.W. Tsai, A. Chuang, and P.K. Liaw, Acta Mater. 60, 5723 (2012).

    ADS  CAS  Google Scholar 

  20. J.Z. He, Y. Tang, Z.R. Zhang, S. Li, L.A. Zhu, Y.C. Ye, H. Luo, and S.X. Bai, Corros. Sci. 209, 110778 (2022).

    CAS  Google Scholar 

  21. R.X. Wang, Y. Tang, S. Li, Y.L. Ai, Y.Y. Li, B. Xiao, L.A. Zhu, and S.X. Bai, J. Alloy. Compd. 825, 154099 (2020).

    CAS  Google Scholar 

  22. Y.K. Cao, Y. Liu, B. Liu, W.D. Zhang, and J.W. Wang, T Nonferr Metal Soc 29, 1476 (2019).

    CAS  Google Scholar 

  23. Q. Xu, T. Zhu, Z.H. Zhong, X.Z. Cao, and H. Tsuchida, J. Alloy. Compd. 888, 161518 (2021).

    CAS  Google Scholar 

  24. O.N. Senkov, G.B. Wilks, D.B. Miracle, C.P. Chuang, and P.K. Liaw, Intermetallics 18, 1758 (2010).

    CAS  Google Scholar 

  25. O.N. Senkov, D.B. Miracle, K.J. Chaput, and J.P. Couzinie, J Mater Res 33, 3092 (2018).

    ADS  CAS  Google Scholar 

  26. B. Kang, J.H. Lee, H.J. Ryu, and S.H. Hong, Mater. Sci. Eng. A 712, 616 (2018).

    CAS  Google Scholar 

  27. J.Z. He, Y.T. Qiao, R.X. Wang, Y. Tang, S. Li, X.Y. Liu, Y.C. Ye, L.A. Zhu, Z. Wang, and S.X. Bai, J. Alloy. Compd. 891, 156 (2022).

    Google Scholar 

  28. Y. Xing, C.J. Li, Y.K. Mu, Y.D. Jia, K.K. Song, J. Tan, G. Wang, Z.Q. Zhang, J.H. Yi, and J. Eckert, J. Mater. Sci. Technol. 132, 119 (2023).

    CAS  Google Scholar 

  29. X.F. Li, J. Yin, J. Zhang, Y.F. Wang, X.L. Song, Y. Zhang, and X.C. Ren, J. Mater. Sci. Technol. 122, 20 (2022).

    CAS  Google Scholar 

  30. T.W. Na, K.B. Park, S.Y. Lee, S.M. Yang, J.W. Kang, T.W. Lee, K. Park, and H.K. Park, J. Alloy. Compd. 817, 152757 (2020).

    CAS  Google Scholar 

  31. S.C. Marques, A.V. Castilho, and D.S. Santos, Scr. Mater. 201, 113957 (2021).

    CAS  Google Scholar 

  32. K.B. Park, J.Y. Park, Y.D. Kim, T.W. Na, C.B. Mo, J. Chou, H.S. Kang, and H.K. Park, Intermetallics 130, 125060 (2021).

    Google Scholar 

  33. W.H. Lee, K.B. Park, K.W. Yi, S.Y. Lee, K. Park, T.W. Lee, and H.K. Park, Metals-Basel 9, 1296 (2019).

    CAS  Google Scholar 

  34. M. Akmal, H.K. Park, and H.J. Ryu, Mater Chem Phys 273, 125060 (2021).

    CAS  Google Scholar 

  35. B. Zhang, Y. Tang, S. Li, Y.C. Ye, L.A. Zhu, Z.R. Zhang, Z. Wang, and S.X. Bai, Entropy 23, 125060 (2021).

    Google Scholar 

  36. Y.D. Wu, Y.H. Cai, X.H. Chen, T. Wang, J.J. Si, L. Wang, Y.D. Wang, and X.D. Hui, Mater. Design 83, 651 (2015).

    CAS  Google Scholar 

  37. O.N. Senkov, G.B. Wilks, J.M. Scott, and D.B. Miracle, Intermetallics 19, 698 (2011).

    CAS  Google Scholar 

  38. Z.D. Han, N. Chen, S.F. Zhao, L.W. Fan, G.N. Yang, Y. Shao, and K.F. Yao, Intermetallics 84, 153 (2017).

    CAS  Google Scholar 

  39. H. Liu, L.X. Lian, and Y. Liu, Mater. Man Process 34, 630 (2019).

    CAS  Google Scholar 

  40. Q.J. Li, L. Zhang, B.B. Li, and X.H. Xue, Rare Metal Mater. Eng. 22, 56 (2020).

    Google Scholar 

  41. W. Xu, S.Q. Xiao, X. Lu, G. Chen, C.C. Liu, and X.H. Qu, J. Mater. Sci. Technol. 35, 322 (2019).

    CAS  Google Scholar 

  42. I.S. Batra, R.N. Singh, P. Sengupta, B.C. Maji, K. Madangopal, K.V. Manikrishna, R. Tewari, and G.K. Dey, J. Nucl. Mater. 38, 389 (2009).

    Google Scholar 

  43. J. Montero, L. Laversenne, V. Nassif, G. Zepon, M. Sahlberg, and C. Zlotea, J. Alloy. Compd. 835, 155376 (2020).

    CAS  Google Scholar 

  44. O.N. Senkov, S.V. Senkova, D.M. Dimiduk, C. Woodward, and D.B. Miracle, J. Mater. Sci. 47, 6522 (2012).

    ADS  CAS  Google Scholar 

  45. H.S. Grewal, R.M. Sanjiv, H.S. Arora, R. Kumar, A. Ayyagari, S. Mukherjee, and H. Singh, Adv. Eng. Mater. 19, 1700182 (2017).

    Google Scholar 

  46. S.C. Marques, and A.V. Castilho, Scripta Mater. 201, 113957 (2021).

    CAS  Google Scholar 

  47. G. Hachet, A. Metsue, A. Oudriss, and X. Feaugas, Acta Mater. 148, 280 (2018).

    ADS  CAS  Google Scholar 

  48. D.S. Santos, S. Miraglia, and D. Fruchart, J. Alloy. Compd. 291, 113957 (1999).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 52171166, 11972372 and U20A20231). The SEM analyses of this work was supported by Sinoma Institute of Materials Research (Guang Zhou) Co., Ltd.

Author information

Authors and Affiliations

Authors

Contributions

SL: Conceptualization, Methodology, Investigation, Writing-Review and Editing, Visualization, Funding acquisition. JH: Conceptualization, Methodology, Resources, Writing-Original Draft. ZL: Writing—review and editing, Methodology. RW: Validation, Resources, Project administration, Review, Data Curation. ZZ: Validation. LZ: Data Curation. YT: Formal analysis, Methodology, Writing—review and editing, Funding acquisition. SB: Funding acquisition, Supervision, Writing—review and editing.

Corresponding author

Correspondence to Ruixin Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 255 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., He, J., Liu, Z. et al. Hydride–Dehydride Processes and Behaviors for Ductile Refractory Complex Concentrated Alloys. JOM 76, 2069–2078 (2024). https://doi.org/10.1007/s11837-024-06377-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-024-06377-w

Navigation