Skip to main content
Log in

Study on the Cavitation and Dissociation of Sulfur from Zinc Leaching Residue

  • Recent Developments on Metals and Energy Extraction from Waste Streams
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Recycling and harmless treatment of zinc leaching residue is always an important problem in zinc hydrometallurgy. At present, the common method to dispose of zinc leaching residue is the flotation–heat filtration process, but the extraction of valuable components and the removal of toxic substances are not ideal. This paper mainly studies the process of treating zinc leaching residue by cavitation and dissociation technology. Through the process optimization test, the control technology of zinc leaching residue monomer is formed. The temperature of the reactor can indirectly affect the distribution and diameter of the cavitation bubbles required in the process of cavitation and dissociation, which is an important factor affecting the effect of cavitation and dissociation. The air inlet flow rate affects the cavitation and dissociation process by affecting the flow field distribution and the gas phase volume fraction distribution. Reducing the pulp concentration can accelerate the cavitation and dissociation process. The ultrasonic physical field has a good effect on the decomposition of zinc leaching residue in the full particle size range. The optimum conditions of 80°C reactor temperature, 6 × 10−5 kg L−1 gas flow, 5 g L−1 pulp concentration, and air as gas phase input meet this standard. The recovery rate of sulfur was 85.4%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. L.Y. Yan, A.J. Wang, Q.S. Chen, and J.W. Li, Resour. Conserv. Recycl. 75, 23 https://doi.org/10.1016/j.resconrec.2013.03.004 (2013).

    Article  Google Scholar 

  2. M. Kazemi, and D. Sichen, J. Sustain. Metall. https://doi.org/10.1007/s40831-015-0037-1 (2016).

    Article  Google Scholar 

  3. L. Tang, C. Tang, J. Xiao, P. Zeng, and M. Tang, J. Clean. Prod. https://doi.org/10.1016/j.jclepro.2018.08.096 (2018).

    Article  Google Scholar 

  4. Y.F. Ye, Y. Zhu, N. Lu, X. Wang, and Z. Su, RSC Adv. 11, 5096 https://doi.org/10.1039/d0ra07727e (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  5. Z. Zhang, W. Li, J. Zhan, G. Li, and Z. Zhao, J. Therm. Anal. Calorim. https://doi.org/10.1007/s10973-018-7894-3 (2019).

    Article  Google Scholar 

  6. B. Aparajith, A. Kumar, D. Hodder, and M.L. Gupta, Hydrometallurgy. https://doi.org/10.1016/j.hydromet.2010.01.008 (2010).

    Article  Google Scholar 

  7. D. Lu, Z. Jin, L. Shi, G. Tu, F. Xie, and E. Asselin, Miner. Eng. https://doi.org/10.1016/j.mineng.2014.03.026 (2014).

    Article  Google Scholar 

  8. B.B. Orazbayev, S. Zh Ye, L.T. Kurmangaziyeva, and S.K. Kodanova, J. Sulfur Chem. https://doi.org/10.1080/17415993.2020.1759603 (2020).

    Article  Google Scholar 

  9. S.L. Suárez-Gómez, M.L. Sánchez, F. Blanco, and J. Ayala, J. Hazard. Mater. https://doi.org/10.1016/j.jhazmat.2017.04.051 (2017).

    Article  PubMed  Google Scholar 

  10. X.J. Xu, C. Chen, A.J. Wang, N. Fang, Y. Yuan, N.Q. Ren, and D.J. Lee, Bioresour. Technol. https://doi.org/10.1016/j.biortech.2020.124367 (2021).

    Article  PubMed  Google Scholar 

  11. P. Peng, H.Q. Xie, and L.Z. Lu, Hydrometallurgy 80, 265 https://doi.org/10.1016/j.hydromet.2005.08.004 (2005).

    Article  CAS  Google Scholar 

  12. P. Peng, H.Q. Xie, and L.Z. Lu, Miner. Eng. 18, 553 https://doi.org/10.1016/j.mineng.2004.08.012 (2005).

    Article  CAS  Google Scholar 

  13. E. Jorjani, and A. Ghahreman, Hydrometallurgy 171, 333 https://doi.org/10.1016/j.hydromet.2017.06.011 (2017).

    Article  CAS  Google Scholar 

  14. Z.F. Xu, Q.A. Li, and H.P. Nie, Trans. Nonferrous Met. Soc. China 20, S176 https://doi.org/10.1016/s1003-6326(10)60035-0 (2010).

    Article  CAS  Google Scholar 

  15. J. Li and H.Z. Ma, Green Process. Synth. 7, 552 https://doi.org/10.1515/gps-2017-0079 (2018).

    Article  CAS  Google Scholar 

  16. D.A. Ramirez-Cadavid, O. Kozyuk, and F.C. Michel, Biomass Convers. Biorefin. https://doi.org/10.1007/s13399-013-0103-5 (2014).

    Article  Google Scholar 

  17. Y. Irisawa, E. Ohdaira, N. Masuzawa, and M. Ide, Jpn. J. Appl. Phys. https://doi.org/10.1143/JJAP.38.3320 (1999).

    Article  Google Scholar 

  18. J. Zhang, T.L. Jackson, and A.M.D. Jost, Phys. Rev. Fluids. https://doi.org/10.1103/physrevfluids.2.053603 (2017).

    Article  Google Scholar 

  19. S. Sen, Powder Technol. https://doi.org/10.1016/j.powtec.2016.04.020 (2016).

    Article  Google Scholar 

  20. R. Tsuboi, Y. Kakinuma, T. Aoyama, H. Ogawa, and S. Hamada, Procedia CIRP. https://doi.org/10.1016/j.procir.2012.04.061 (2012).

    Article  Google Scholar 

  21. I. Hua, R.H. Hoechemer, and M.R. Hoffmann, J. Phys. Chem. https://doi.org/10.1021/j100008a015 (1995).

    Article  Google Scholar 

  22. S.T. Johansen, J. Wu, and W. Shyy, Int. J. Heat Fluid Flow. https://doi.org/10.1016/j.ijheatfluidflow.2003.10.005 (2003).

    Article  Google Scholar 

  23. Y. Luo, X. Zhixiang, H. Sun, S. Yuan, and J. Yuan, Adv. Mech. Eng. https://doi.org/10.1177/1687814015617134 (2015).

    Article  Google Scholar 

  24. J. Cai, P. Zheng, M. Qaisar, and J. Zhang, Crit. Rev. Environ. Sci. Technol. https://doi.org/10.1080/10643389.2017.1394154 (2017).

    Article  Google Scholar 

  25. F. Milinazzo, and P.G. Saffman, J. Comput. Phys. https://doi.org/10.1016/0021-9991(77)90069-9 (1977).

    Article  Google Scholar 

  26. H. Luo, J. Bai, J. He, G. Liu, Y. Lu, R. Zhang, and C. Zeng, Sci. Total. Environ. https://doi.org/10.1016/j.scitotenv.2020.138685 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  27. G.L.M. Andrés, and B.C.L. Carlos, Revista Facultad de Ingeniería Universidad de Antioquia. https://doi.org/10.17533/udea.redin.n82a11 (2017).

    Article  Google Scholar 

  28. S. Shamshirband, M. Babanezhad, A. Mosavi, N. Nabipour, E. Hajnal, L. Nadai, and K.W. Chau, Eng. Appl. Comput. Fluid Mech. 14, 367 https://doi.org/10.1080/19942060.2020.1715842 (2020).

    Article  Google Scholar 

  29. L.X. Yip, and E.W.C. Lim, Chem. Eng. Technol. 4, 1 https://doi.org/10.1002/ceat.201800285 (2018).

    Article  CAS  Google Scholar 

  30. Y. Gao, Y. Liu, L. Zhong, J. Hou, and L. Lu, Int. J. Turbo Jet-Engines. https://doi.org/10.1515/tjj-2015-0039 (2016).

    Article  Google Scholar 

  31. C.B. Ivey, and P. Moin, J. Comput. Phys. https://doi.org/10.1016/j.jcp.2017.08.054 (2017).

    Article  Google Scholar 

  32. M. Mariana, and U. Gabriel, J. Irrig. Drainage Eng. https://doi.org/10.1061/(ASCE)IR.1943-4774.0001650 (2022).

    Article  Google Scholar 

  33. E. Kadivar, E. Kadivar, K. Javadi, and S.M. Javadpour, Appl. Math. Model. 45, 165 https://doi.org/10.1016/j.apm.2016.12.017 (2017).

    Article  MathSciNet  Google Scholar 

  34. M.J. Ahammad, M.A. Rahman, J. Alam, and S. Butt, Adv. Mech. Eng. https://doi.org/10.1177/1687814019873250 (2019).

    Article  Google Scholar 

  35. G. Faroogh, M. Tarek, and M. Tew-Fik, Ocean Eng. https://doi.org/10.1016/J.OCEANENG.2022.110711 (2022).

    Article  Google Scholar 

  36. T. Hongbin, Y. Min, S. Xuemei, M. Xiaoling, D. Faqin, and Y. Feihua, J. Therm. Anal. Calorim. https://doi.org/10.1007/S10973-022-11724-7 (2022).

    Article  Google Scholar 

  37. D. Yinshun, D. Liangfeng, D. Yamin, Z. Wenjie, and Z. Shan, J. Hazardous Mater. https://doi.org/10.1016/J.JHAZMAT.2022.129256 (2022).

    Article  Google Scholar 

  38. H. Cai, Z. Wu, Z. Li, and T. Xiao, Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. https://doi.org/10.1177/0954410015603414 (2016).

    Article  Google Scholar 

  39. S.T. Johansen, J.Y. Wu, and W. Shyy, Int. J. Heat Fluid Flow 25, 10 https://doi.org/10.1016/j.ijheatfluidflow.2003.10.005 (2004).

    Article  Google Scholar 

  40. C.D. Olivier, D. François, A.J. André, and L.J. Baptiste, J. Fluids Eng. 12, 9 https://doi.org/10.1115/1.2427079 (2007).

    Article  Google Scholar 

  41. H. Bai, N. Cochet, A. Pauss, and E. Lamy, Colloids Surf., B. https://doi.org/10.1016/j.colsurfb.2016.11.004 (2017).

    Article  Google Scholar 

  42. L. Mingda, L. Jing, L. Jingqiao, X. Bailin, M. Rogerio, and L. Qingxia, Powder Technol. https://doi.org/10.1016/J.POWTEC.2022.117502 (2022).

    Article  Google Scholar 

  43. S.V. Mamonov, V.N. Zakirnichny, A.A. Metelev, T.P. Dresvyankina, S.V. Volkova, V.A. Kuznetsov, and S.V. Ziyatdinov, J. Min. Sci. 55, 839 https://doi.org/10.1134/s1062739119056210 (2019).

    Article  CAS  Google Scholar 

  44. M. Armağan and A.A. Arici, Mater. Manuf. Process. https://doi.org/10.1080/10426914.2016.1269919 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support from research project of the occurrence law of toxic components of zinc leaching residue and the directional separation technology of elemental sulfur (2018YFC1902005) and Central South University for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongming Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 128 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, W., Hu, X., Yan, Y. et al. Study on the Cavitation and Dissociation of Sulfur from Zinc Leaching Residue. JOM 76, 1394–1407 (2024). https://doi.org/10.1007/s11837-023-06321-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-06321-4

Navigation