Skip to main content
Log in

Galvanic Replacement of Magnesium Nanowire Arrays to Form Templated Antimony Frameworks

  • Mechanistic Interactions in Energy Storage
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The emerging criticality of key constituents of Li-ion batteries has focused attention on more earth-abundant battery chemistries. Realizing the promise of alternative chemistries such as multivalent batteries requires the effective utilization of metal anodes. Utilization of pure magnesium as a negative electrode has been stymied by challenges such as formation of passivation layers, proclivity to form 3D deposits, and electromechanical instabilities. As such, considerable recent attention has focused on the design of composites that blend magnesium with a less electrochemically active metal. Here, we report a facile electroless galvanic replacement reaction to prepare 3D scaffolds incorporating antimony through the reaction of antimony halides with large-area electrodeposited magnesium nanowire arrays. The kinetics of the galvanic replacement reaction and the morphology of the resulting products are modulated by varying the activity coefficient and concentration of dissolved antimony-ions, which in turn is controlled through choice of the halide precursor and its solution concentration. The obtained products range from speckled antimony particles deposited across magnesium nanowires to continuous antimony scaffolds encasing electroactive magnesium cores and core–shell structures. The design of antimony-scaffolded composite architectures that nevertheless permit electrochemical accessibility of a magnesium core represents a promising scalable approach to the design of anodic frameworks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J.U. Choi, N. Voronina, Y.K. Sun, and S.T. Myung, Adv. Energy Mater. 10, 2002027 (2020).

    Article  CAS  Google Scholar 

  2. N. Zhang, T. Deng, S. Zhang, C. Wang, L. Chen, C. Wang, and X. Fan, Adv. Mater. 34, 2107899 (2022).

    Article  CAS  Google Scholar 

  3. J. Piątek, S. Afyon, T.M. Budnyak, S. Budnyk, M.H. Sipponen, and A. Slabon, Adv. Energy Mater. 11, 2003456 (2021).

    Article  Google Scholar 

  4. D.A. Santos, S. Rezaei, D. Zhang, Y. Luo, B. Lin, A.R. Balakrishna, B.X. Xu, and S. Banerjee, Chem. Sci. 14, 458 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Q. Zhang, W. Cai, Y.X. Yao, G.L. Zhu, C. Yan, L.L. Jiang, C. He, and J.Q. Huang, Chem. Soc. Rev. 49, 3806 (2020).

    Article  PubMed  Google Scholar 

  6. L. Zhao, B. Ding, X.Y. Qin, Z. Wang, W. Lv, Y.B. He, Q.H. Yang, and F. Kang, Adv. Mater. 34, 2106704 (2022).

    Article  CAS  Google Scholar 

  7. H. Zhang, Y. Yang, D. Ren, L. Wang, and X. He, Energy Storage Mater 36, 147 (2021).

    Article  Google Scholar 

  8. Y. Liang, H. Dong, D. Aurbach, and Y. Yao, Nat. Energy 5, 646 (2020).

    Article  CAS  ADS  Google Scholar 

  9. Z. Huang, J. Ren, W. Zhang, M. Xie, Y. Li, D. Sun, Y. Shen, and Y. Huang, Adv. Mater. 30, 1 (2018).

    CAS  ADS  Google Scholar 

  10. M. Jäckle, K. Helmbrecht, M. Smits, D. Stottmeister, and A. Groß, Energy Environ. Sci. 11, 3400 (2018).

    Article  Google Scholar 

  11. K.B. Hatzell, X.C. Chen, C.L. Cobb, N.P. Dasgupta, M.B. Dixit, L.E. Marbella, M.T. McDowell, P.P. Mukherjee, A. Verma, V. Viswanathan, A.S. Westover, and W.G. Zeier, ACS Energy Lett. 5, 922 (2020).

    Article  CAS  Google Scholar 

  12. L. Lin, K. Qin, Y. Sheng Hu, H. Li, X. Huang, L. Suo, and L. Chen, Adv. Mater. 34, 2110323 (2022).

    Article  CAS  Google Scholar 

  13. Z. Lu, Z. Yang, C. Li, K. Wang, J. Han, P. Tong, G. Li, B.S. Vishnugopi, P.P. Mukherjee, C. Yang, and W. Li, Adv. Energy Mater. 11, 2003811 (2021).

    Article  CAS  Google Scholar 

  14. J.L. Andrews and S. Banerjee, Joule 2, 2194 (2018).

    Article  Google Scholar 

  15. C. Xu, Q. Dai, L. Gaines, M. Hu, A. Tukker, and B. Steubing, Commun. Mater 1, 1 (2020).

    Article  Google Scholar 

  16. Y. Tian, G. Zeng, A. Rutt, T. Shi, H. Kim, J. Wang, J. Koettgen, Y. Sun, B. Ouyang, T. Chen, Z. Lun, Z. Rong, K. Persson, and G. Ceder, Chem. Rev. 121, 1623 (2021).

    Article  CAS  PubMed  Google Scholar 

  17. Z. Zhao-Karger and M. Fichtner, Front. Chem. 7, 1 (2019).

    Article  Google Scholar 

  18. R. Mohtadi, O. Tutusaus, T.S. Arthur, Z. Zhao-Karger, and M. Fichtner, Joule 5, 581 (2021).

    Article  CAS  Google Scholar 

  19. I.D. Johnson, A.N. Mistry, L. Yin, M. Murphy, M. Wolfman, T.T. Fister, S.H. Lapidus, J. Cabana, V. Srinivasan, and B.J. Ingram, J. Am. Chem. Soc. 144, 14121 (2022).

    Article  CAS  PubMed  Google Scholar 

  20. R. Davidson, A. Verma, D. Santos, F. Hao, C. Fincher, S. Xiang, J. Van Buskirk, K. Xie, M. Pharr, P.P. Mukherjee, and S. Banerjee, ACS Energy Lett. 4, 375 (2019).

    Article  CAS  Google Scholar 

  21. R. Davidson, A. Verma, D. Santos, F. Hao, C.D. Fincher, D. Zhao, V. Attari, P. Schofield, J. Van Buskirk, A. Fraticelli-Cartagena, T.E.G. Alivio, R. Arroyave, K. Xie, M. Pharr, P.P. Mukherjee, and S. Banerjee, Mater. Horiz. 7, 843 (2020).

    Article  CAS  Google Scholar 

  22. M.S. Ding, T. Diemant, R.J. Behm, S. Passerini, and G.A. Giffin, J. Electrochem. Soc. 165, A1983 (2018).

    Article  CAS  Google Scholar 

  23. J. Muldoon, C.B. Bucur, A.G. Oliver, T. Sugimoto, M. Matsui, H.S. Kim, G.D. Allred, J. Zajicek, and Y. Kotani, Energy Environ. Sci. 5, 5941 (2012).

    Article  CAS  Google Scholar 

  24. J.H. Kwak, Y. Jeoun, S.H. Oh, S. Yu, J.H. Lim, Y.E. Sung, S.H. Yu, and H.D. Lim, ACS Energy Lett. 7, 162 (2022).

    Article  CAS  Google Scholar 

  25. A. Benmayza, M. Ramanathan, T.S. Arthur, M. Matsui, F. Mizuno, J. Guo, P.A. Glans, and J. Prakash, J. Phys. Chem. C 117, 26881 (2013).

    Article  CAS  Google Scholar 

  26. J. Eaves-Rathert, K. Moyer, M. Zohair, and C.L. Pint, Joule 4, 1324 (2020).

    Article  CAS  Google Scholar 

  27. D. Li, Y. Yuan, J. Liu, M. Fichtner, and F. Pan, J. Magnes. Alloys 8, 963 (2020).

    Article  CAS  Google Scholar 

  28. A. Hagopian, M.L. Doublet, and J.S. Filhol, Energy Environ. Sci. 13, 5186 (2020).

    Article  CAS  Google Scholar 

  29. E. Santos and W. Schmickler, Angew. Chem. Int. Ed. 60, 5876 (2021).

    Article  CAS  Google Scholar 

  30. H.D. Yoo, I. Shterenberg, Y. Gofer, G. Gershinsky, N. Pour, and D. Aurbach, Energy Environ. Sci. 6, 2265 (2013).

    Article  CAS  Google Scholar 

  31. O. Tutusaus, R. Mohtadi, T.S. Arthur, F. Mizuno, E.G. Nelson, and Y.V. Sevryugina, Angew. Chem. 127, 8011 (2015).

    Article  ADS  Google Scholar 

  32. W. Sun, L. Chen, J. Wang, H. Zhang, Z. Quan, F. Fu, H. Kong, S. Wang, and H. Chen, J. Mater. Chem. A. Mater. 11, 15724 (2023).

    Article  CAS  Google Scholar 

  33. K.L. Ng, K. Shu, and G. Azimi, IScience 25, 104711 (2022).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  34. Y.H. Tan, W.T. Yao, T. Zhang, T. Ma, L.L. Lu, F. Zhou, H. Bin Yao, and S.H. Yu, ACS Nano 12, 5856 (2018).

    Article  CAS  PubMed  Google Scholar 

  35. F. Murgia, P-Block Elements as Negative Electrode Materials for Magnesium-Ion Batteries: Electrochemical Mechanism and Performance (2016)

  36. L. Blondeau, E. Foy, H. Khodja, and M. Gauthier, J. Phys. Chem. C 123, 1120 (2019).

    Article  CAS  Google Scholar 

  37. B. Huang, Z. Pan, X. Su, and L. An, J. Power. Sources 395, 41 (2018).

    Article  CAS  ADS  Google Scholar 

  38. F. Murgia, L. Stievano, L. Monconduit, and R. Berthelot, J. Mater. Chem. A. Mater. 3, 16478 (2015).

    Article  CAS  Google Scholar 

  39. N. Wu, Y.C. Lyu, R.J. Xiao, X. Yu, Y.X. Yin, X.Q. Yang, H. Li, L. Gu, and Y.G. Guo, NPG Asia Mater. 6, 1 (2014).

    ADS  Google Scholar 

  40. Y. Shao, M. Gu, X. Li, Z. Nie, P. Zuo, G. Li, T. Liu, J. Xiao, Y. Cheng, C. Wang, J.G. Zhang, and J. Liu, Nano Lett. 14, 255 (2014).

    Article  CAS  PubMed  ADS  Google Scholar 

  41. Y. Cheng, Y. Shao, L.R. Parent, M.L. Sushko, G. Li, P.V. Sushko, N.D. Browning, C. Wang, and J. Liu, Adv. Mater. 27, 6598 (2015).

    Article  CAS  PubMed  Google Scholar 

  42. K. Nieto, D.S. Windsor, A.R. Kale, J.R. Gallawa, D.A. Medina, and A.L. Prieto, J. Phys. Chem. C 127, 12415 (2023).

    Article  CAS  Google Scholar 

  43. S. Sarkar, H.J. Gonzalez-Malabet, M. Flannagin, A. L’Antigua, P.D. Shevchenko, G.J. Nelson, P.P. Mukherjee, and A.C.S. Appl, Mater. Interfaces 14, 29711 (2022).

    Article  CAS  Google Scholar 

  44. K. Nieto, N.J. Gimble, L.J. Rudolph, A.R. Kale, and A.L. Prieto, J. Electrochem. Soc. 169, 050537 (2022).

    Article  CAS  ADS  Google Scholar 

  45. S. Sarkar, A. Verma, and P.P. Mukherjee, J. Electrochem. Soc. 168, 090550 (2021).

    Article  CAS  ADS  Google Scholar 

  46. B. Yang, L. Xia, R. Li, G. Huang, S. Tan, Z. Wang, B. Qu, J. Wang, and F. Pan, J. Mater. Sci. Technol. 157, 154 (2023).

    Article  CAS  Google Scholar 

  47. J. Zhang, X. Guan, R. Lv, D. Wang, P. Liu, and J. Luo, Energy Stor. Mater. 26, 408 (2020).

    Google Scholar 

  48. Y. Zhao, P. Stein, Y. Bai, M. Al-Siraj, Y. Yang, and B.X. Xu, J. Power. Sources 413, 259 (2019).

    Article  CAS  ADS  Google Scholar 

  49. L.S. De Vasconcelos, R. Xu, Z. Xu, J. Zhang, N. Sharma, S.R. Shah, J. Han, X. He, X. Wu, H. Sun, S. Hu, M. Perrin, X. Wang, Y. Liu, F. Lin, Y. Cui, and K. Zhao, Chem. Rev. 122, 13043 (2022).

    Article  PubMed  Google Scholar 

  50. J.L. Andrews, P. Stein, D.A. Santos, C.J. Chalker, L.R. De Jesus, R.D. Davidson, M.A. Gross, M. Pharr, J.D. Batteas, B.-X. Xu, and S. Banerjee, Matter 3, 1754 (2020).

    Article  Google Scholar 

  51. L. Viyannalage, V. Lee, R.V. Dennis, D. Kapoor, C.D. Haines, and S. Banerjee, Chem. Comm. 48, 5169 (2012).

    Article  CAS  PubMed  Google Scholar 

  52. M.H. Oh, T. Yu, S.-H. Yu, B. Lim, K.-T. Ko, M.-G. Willinger, D.-H. Seo, B.H. Kim, M.G. Cho, J.-H. Park, K. Kang, Y.-E. Sung, N. Pinna, and T. Hyeon, Science (1979) 340, 964 (2013).

    CAS  Google Scholar 

  53. H. Cheng, C. Wang, D. Qin, and Y. Xia, Acc. Chem. Res. 56, 900 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. S.G. Bratsch, J. Phys. Chem. Ref. Data 18, 1 (1989).

    Article  CAS  ADS  Google Scholar 

  55. L. Viyannalage, V. Lee, R.V. Dennis, D. Kapoor, C.D. Haines, and S. Banerjee, Chem. Commun. 48, 5169 (2012).

    Article  CAS  Google Scholar 

  56. J. Hwang, T. Yamamoto, A. Sakuda, K. Matsumoto, and K. Miyazaki, Electrochemistry 90, 102002 (2022).

    Article  CAS  Google Scholar 

  57. Y. Marcus, Pure Appl. Chem. 57, 1129 (1985).

    Article  CAS  Google Scholar 

  58. A. Papaderakis, I. Mintsouli, J. Georgieva, and S. Sotiropoulos, Catalysts 7, 80 (2017).

    Article  Google Scholar 

  59. W.F.C. Pletcher, Industrial Electrochemistry II (Chapman & Hall, London, 1990).

    Google Scholar 

  60. F. Hao, A. Verma, and P.P. Mukherjee, Energy Stor. Mater. 20, 1 (2019).

    Google Scholar 

  61. X. Liu, M. Atwater, J. Wang, and Q. Huo, Colloids Surf. B Biointerfaces 58, 3 (2007).

    Article  CAS  PubMed  Google Scholar 

  62. L.M. Rossi, J.L. Fiorio, M.A.S. Garcia, and C.P. Ferraz, Dalton Trans. 47, 5889 (2018).

    Article  CAS  PubMed  Google Scholar 

  63. P.V. Johnson and E.C. Baughan, J. Chem. Soc. A: Inorgan. Phys. Theor. https://doi.org/10.1039/J19690002686 (1969).

    Article  Google Scholar 

  64. W.W. Lucasse, J. Am. Chem. Soc. 51, 2597 (1929).

    Article  CAS  Google Scholar 

  65. F.H. Getman, J. Phys. Chem. 32, 940 (1928).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge partial support from the National Science Foundation under DMR 1809866. RDD acknowledges support from the Intelligence Community Postdoctoral Research Fellowship Program administered by Oak Ridge Institute for Science and Education (ORISE) through an interagency agreement between the US Department of Energy and the Office of the Director of National Intelligence (ODNI). Use of the TAMU Materials Characterization Facility is acknowledged. The authors additionally acknowledge initial help with synthesis from Joshua Diaz.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rachel Davidson or Sarbajit Banerjee.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 365 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carrillo, L., Schofield, P., Zercher, S. et al. Galvanic Replacement of Magnesium Nanowire Arrays to Form Templated Antimony Frameworks. JOM 76, 1143–1152 (2024). https://doi.org/10.1007/s11837-023-06275-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-06275-7

Navigation