Skip to main content
Log in

Mechanical and Li Diffusion Properties of Interface Systems in the Solid Electrolyte Interphase

  • Mechanistic Interactions in Energy Storage
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Lithium (Li) metal has emerged as one of the most promising electrode materials with great potential to fulfill the demands of high-energy-density batteries. The solid electrolyte interphase (SEI) on the Li metal anode plays a critical role in electrochemical processes and undergoes large deformation. SEI failure could promote the growth of Li dendrites, leading to performance degradation and security hazards in Li metal batteries. The native SEI exhibits poor mechanical properties, which can be attributed to the presence of heterogeneous interfaces between various components. In this work, we construct the heterogeneous interface by two SEI inorganic components of LiF and Li2O. Using density functional theory calculations, we investigate the mechanical properties of the LiF/Li2O interface system and explore the diffusion mechanisms of Li ions through the strained LiF/Li2O interface. The results indicate that the heterogeneous interface system has relatively low Young's modulus and tensile strength. In addition, tensile strain increases the energy barriers of interface diffusion, thereby reducing the rate of electrochemical reactions. This study could contribute to the analysis of SEI failure, providing theoretical understanding for Li interface diffusion in the SEI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. L. Grande, E. Paillard, J. Hassoun, J.-B. Park, Y.-J. Lee, Y.-K. Sun, S. Passerini, and B. Scrosati, Adv. Mater. 27, 784 (2015).

    Article  CAS  PubMed  Google Scholar 

  2. Y. Lu, M. Tikekar, R. Mohanty, K. Hendrickson, L. Ma, and L.A. Archer, Adv. Energy Mater. 5, 1402073 (2015).

    Article  Google Scholar 

  3. X.-B. Cheng and Q. Zhang, J. Mater. Chem. A 3, 7207 (2015).

    Article  ADS  CAS  Google Scholar 

  4. Y. Sun, N. Liu, and Y. Cui, Nat. Energy 1, 16071 (2016).

    Article  ADS  CAS  Google Scholar 

  5. W. Xu, J. Wang, F. Ding, X. Chen, E. Nasybulin, Y. Zhang, and J.-G. Zhang, Energy Environ. Sci. 7, 513 (2014).

    Article  CAS  Google Scholar 

  6. E. Peled, J. Electrochem. Soc. 126, 2047 (1979).

    Article  ADS  CAS  Google Scholar 

  7. E. Peled, D. Golodnitsky, and G. Ardel, J. Electrochem. Soc. 144, L208 (1997).

    Article  CAS  Google Scholar 

  8. D. Aurbach, J. Power. Sources 89, 206 (2000).

    Article  ADS  CAS  Google Scholar 

  9. Y. Li, Y. Li, A. Pei, K. Yan, Y. Sun, C.-L. Wu, L.-M. Joubert, R. Chin, A.L. Koh, and Y. Yu, Science 358, 506 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. X.-B. Cheng, R. Zhang, C.-Z. Zhao, F. Wei, J.-G. Zhang, and Q. Zhang, Adv. Sci. 3, 1500213 (2016).

    Article  Google Scholar 

  11. X. Shen, R. Zhang, X. Chen, X.B. Cheng, X. Li, and Q. Zhang, Adv. Energy Mater. 10, 1903645 (2020).

    Article  CAS  Google Scholar 

  12. Z. Zhang, K. Smith, R. Jervis, P.R. Shearing, T.S. Miller, D.J.L. Brett, and A.C.S. Appl, Mater. Interfaces 12, 35132 (2020).

    Article  CAS  Google Scholar 

  13. Y. Gao, X. Du, Z. Hou, X. Shen, Y.-W. Mai, J.-M. Tarascon, and B. Zhang, Joule 5, 1860 (2021).

    Article  CAS  Google Scholar 

  14. J. Zhang, R. Wang, X. Yang, W. Lu, X. Wu, X. Wang, H. Li, and L. Chen, Nano Lett. 12, 2153 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. X.-R. Liu, X. Deng, R.-R. Liu, H.-J. Yan, Y.-G. Guo, D. Wang, L.-J. Wan, and A.C.S. Appl, Mater. Interfaces 6, 20317 (2014).

    Article  CAS  Google Scholar 

  16. I. Yoon, S. Jurng, D.P. Abraham, B.L. Lucht, and P.R. Guduru, Nano Lett. 18, 5752 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. S. Yuan, S. Weng, F. Wang, X. Dong, Y. Wang, Z. Wang, C. Shen, J.L. Bao, X. Wang, and Y. Xia, Nano Energy 83, 105847 (2021).

    Article  CAS  Google Scholar 

  18. H. Zhang, C. Shen, Y. Huang, and Z. Liu, Appl. Surf. Sci. 537, 147983 (2021).

    Article  CAS  Google Scholar 

  19. J. Zheng, H. Zheng, R. Wang, L. Ben, W. Lu, L. Chen, L. Chen, and H. Li, Phys. Chem. Chem. Phys. 16, 13229 (2014).

    Article  CAS  PubMed  Google Scholar 

  20. X.-B. Cheng, R. Zhang, C.-Z. Zhao, and Q. Zhang, Chem. Rev. 117, 10403 (2017).

    Article  CAS  PubMed  Google Scholar 

  21. D.A. Dornbusch, R. Hilton, S.D. Lohman, and G.J. Suppes, J. Electrochem. Soc. 162, A262 (2014).

    Article  Google Scholar 

  22. C. Fang, J. Li, M. Zhang, Y. Zhang, F. Yang, J.Z. Lee, M.-H. Lee, J. Alvarado, M.A. Schroeder, Y. Yang, B. Lu, N. Williams, M. Ceja, L. Yang, M. Cai, J. Gu, K. Xu, X. Wang, and Y.S. Meng, Nature 572, 511 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. W. Li, H. Zheng, G. Chu, F. Luo, J. Zheng, D. Xiao, X. Li, L. Gu, H. Li, X. Wei, Q. Chen, and L. Chen, Faraday Discuss. 176, 109 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Y. Wang and F. Hao, J. Electrochem. En. Conv. Stor. 19, 040801 (2022).

    Article  CAS  Google Scholar 

  25. I. Yoon, S. Jurng, D.P. Abraham, B.L. Lucht, and P.R. Guduru, Energy Storage Mater. 25, 296 (2020).

    Article  Google Scholar 

  26. X. Zhang, Y. Yang, and Z. Zhou, Chem. Soc. Rev. 49, 3040 (2020).

    Article  CAS  PubMed  Google Scholar 

  27. L. Qin, K. Wang, H. Xu, M. Zhou, G. Yu, C. Liu, Z. Sun, and J. Chen, Nano Energy 77, 105098 (2020).

    Article  CAS  Google Scholar 

  28. B. Jagger and M. Pasta, Joule 7, 1 (2023).

    Article  Google Scholar 

  29. B.S. Vishnugopi, E. Kazyak, J.A. Lewis, J. Nanda, M.T. McDowell, N.P. Dasgupta, and P.P. Mukherjee, ACS Energy Lett. 6, 3734 (2021).

    Article  CAS  Google Scholar 

  30. R. Xu, X.-B. Cheng, C. Yan, X.-Q. Zhang, Y. Xiao, C.-Z. Zhao, J.-Q. Huang, and Q. Zhang, Matter 1, 317 (2019).

    Article  Google Scholar 

  31. A. Ramasubramanian, V. Yurkiv, T. Foroozan, M. Ragone, R. Shahbazian-Yassar, F. Mashayek, and A.C.S. Appl, Energy Mater. 3, 10560 (2020).

    CAS  Google Scholar 

  32. Z. Ahmad, V. Venturi, H. Hafiz, and V. Viswanathan, J. Phys. Chem. C 125, 11301 (2021).

    Article  CAS  Google Scholar 

  33. Z. Liu, Y. Qi, Y.X. Lin, L. Chen, P. Lu, and L.Q. Chen, J. Electrochem. Soc. 163, A592 (2016).

    Article  CAS  Google Scholar 

  34. G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).

    Article  ADS  CAS  Google Scholar 

  35. J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  36. G. Henkelman, B.P. Uberuaga, and H. Jónsson, J. Chem. Phys. 113, 9901 (2000).

    Article  ADS  CAS  Google Scholar 

  37. T. Farley, W. Hayes, S. Hull, M. Hutchings, and M. Vrtis, J. Phys. Condens. Matter 3, 4761 (1991).

    Article  ADS  CAS  Google Scholar 

  38. R. Wyckoff, Cryst. Struct. 1, 85 (1963).

    Google Scholar 

  39. B. Han, X. Li, S. Bai, Y. Zou, B. Lu, M. Zhang, X. Ma, Z. Chang, Y.S. Meng, and M. Gu, Matter 4, 374 (2021).

    Article  CAS  Google Scholar 

  40. Z. Deng, Z. Wang, I.-H. Chu, J. Luo, and S.P. Ong, J. Electrochem. Soc. 163, A67 (2015).

    Article  Google Scholar 

  41. G. Wan, F. Guo, H. Li, Y. Cao, X. Ai, J. Qian, Y. Li, H. Yang, and A.C.S. Appl, Mater. Interfaces 10, 593 (2017).

    Article  ADS  Google Scholar 

  42. D. Kuai, P.B. Balbuena, and A.C.S. Appl, Mater. Interfaces 14, 2817 (2022).

    Article  CAS  Google Scholar 

  43. M. Nie, D.P. Abraham, Y. Chen, A. Bose, and B.L. Lucht, J. Phys. Chem. C 117, 13403 (2013).

    Article  CAS  Google Scholar 

  44. F. Hao, B.S. Vishnugopi, H. Wang, and P.P. Mukherjee, Langmuir 38, 5472 (2022).

    Article  CAS  PubMed  Google Scholar 

  45. S. Shi, P. Lu, Z. Liu, Y. Qi, L.G. Hector, H. Li, and S.J. Harris, J. Am. Chem. Soc. 134, 15476 (2012).

    Article  CAS  PubMed  Google Scholar 

  46. F. Single, B. Horstmann, and A. Latz, J. Electrochem. Soc. 164, E3132 (2017).

    Article  CAS  Google Scholar 

  47. A.D. Mulliner, P.C. Aeberhard, P.D. Battle, W.I.F. David, and K. Refson, Phys. Chem. Chem. Phys. 17, 21470 (2015).

    Article  CAS  PubMed  Google Scholar 

  48. H. Yildirim, A. Kinaci, M.K.Y. Chan, J.P. Greeley, and A.C.S. Appl, Mater. Interfaces 7, 18985 (2015).

    Article  CAS  Google Scholar 

  49. J. Zheng, Z. Ju, B. Zhang, J. Nai, T. Liu, Y. Liu, Q. Xie, W. Zhang, Y. Wang, and X. Tao, J. Mater. Chem. A 9, 10251 (2021).

    Article  CAS  Google Scholar 

  50. J. Christensen and J. Newman, J. Electrochem. Soc. 151, A1977 (2004).

    Article  CAS  Google Scholar 

  51. X.-X. Ma, X. Shen, X. Chen, Z.-H. Fu, N. Yao, R. Zhang, and Q. Zhang, Small Struct. 3, 2200071 (2022).

    Article  CAS  Google Scholar 

  52. A. Ramasubramanian, V. Yurkiv, T. Foroozan, M. Ragone, R. Shahbazian-Yassar, and F. Mashayek, J. Phys. Chem. C 123, 10237 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The information, data, or work presented herein was funded by the Natural Science Foundation of China (Grant No. 12002192) and the Natural Science Foundation of Shandong Province, China (Grant No. ZR2020QA043).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Hao.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Hong, J. & Hao, F. Mechanical and Li Diffusion Properties of Interface Systems in the Solid Electrolyte Interphase. JOM 76, 1153–1161 (2024). https://doi.org/10.1007/s11837-023-06272-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-06272-w

Navigation