Skip to main content
Log in

Investigation on Kinetics and Mechanism of Energy Dissipation by Ultrasound-Assisted Leaching of Low-Nickel Matte

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The effects of ultrasonic power, leaching time, reaction temperature, solution concentration and particle size in leaching process were investigated by univariate method, and the optimal leaching conditions were obtained with Fe3+ concentration of 2.0 mol/L, ultrasonic power of 1500 W, particle size around 100 mesh (− 168 μm + 135 μm) and leaching temperature at 348 Κ for 180 min. The results showed that the leaching efficiencies of nickel, copper and cobalt were 96.3%, 98.2%, and 94.5%, respectively, which were 4–7% higher than those of the mechanical agitation leaching under the same conditions of time, temperature, concentration and particle size. Due to the cavitation effect of ultrasound, the sulfur layer changed from loose and porous labyrinth structure into spherical particles. The rate-determining step of ultrasound-assisted leaching of low-nickel matte was diffusion reaction, and the removal effect of ultrasound on sulfur layer was limited. The change of the micro-morphology of the product layer will cause energy dissipation of ultrasound, which will make the sulfur layer not completely separated from the matrix, and the growth of the leaching efficiency was limited in the macroscopic performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. C. Zhu, J. Chen, W. Tao, Q. Xu, X. Zou, H. Cheng, and X. Lu, JCIS Open 3, 100019 https://doi.org/10.1016/j.jciso.2021.100019 (2021).

    Article  Google Scholar 

  2. W. Tao, C. Zhu, Q. Xu, S. Li, X. Xiong, H. Cheng, X. Zou, and X. Lu, ACS Omega 5, 20090 https://doi.org/10.1021/acsomega.0c01713 (2020).

    Article  Google Scholar 

  3. C. Zhu, X. Hu, Y. Lei, Q. Xu, X. Zou, H. Cheng, and X. Lu, JOM. https://doi.org/10.1007/s11837-022-05319-8 (2022).

    Article  Google Scholar 

  4. F. Cui, W. Mu, S. Wang, H. Xin, H. Shen, Q. Xu, Y. Zhai, and S. Luo, Sep. Purif. Technol. 195, 149 https://doi.org/10.1016/j.seppur.2017.11.071 (2018).

    Article  Google Scholar 

  5. V.O. Almeida, and I.A.H. Schneider, Miner. Eng. 156, 106511 https://doi.org/10.1016/j.mineng.2020.106511 (2020).

    Article  Google Scholar 

  6. S.-H. Geng, G.-S. Li, Y. Zhao, H.-W. Cheng, Y. Lu, X.-G. Lu, and Q. Xu, Trans. Nonferr. Met. Soc. China 29, 2202 https://doi.org/10.1016/s1003-6326(19)65126-5 (2019).

    Article  Google Scholar 

  7. E. Peek, A. Barnes, and A. Tuzun, Miner. Eng. 24, 625 https://doi.org/10.1016/j.mineng.2010.10.004 (2011).

    Article  Google Scholar 

  8. B. Guo, Y. Peng, and R. Espinosa-Gomez, Miner. Eng. 66–68, 25 https://doi.org/10.1016/j.mineng.2014.06.010 (2014).

    Article  Google Scholar 

  9. I. Pérez, I. Moreno-Ventas, G. Ríos, and T. Bravo, Metall. Mater. Trans. B 51, 1432 https://doi.org/10.1007/s11663-020-01844-6 (2020).

    Article  Google Scholar 

  10. Y. Xie, Y. Xu, L. Yan, and R. Yang, Hydrometallurgy 80, 54 https://doi.org/10.1016/j.hydromet.2005.07.005 (2005).

    Article  Google Scholar 

  11. G. Shi, Y. Liao, B. Su, Y. Zhang, W. Wang, and J. Xi, Sep. Purif. Technol. 241, 116699 https://doi.org/10.1016/j.seppur.2020.116699 (2020).

    Article  Google Scholar 

  12. G. Li, X. Zou, H. Cheng, S. Geng, X. Xiong, Q. Xu, Z. Zhou, and X. Lu, Metall. Mater. Trans. B 51, 2769 https://doi.org/10.1007/s11663-020-01967-w (2020).

    Article  Google Scholar 

  13. P. Meshram, Abhilash, and B.D. Pandey, Miner. Process. Extr. Metall. Rev. 40, 157 https://doi.org/10.1080/08827508.2018.1514300 (2018).

    Article  Google Scholar 

  14. G. Li, H. Cheng, S. Chen, X. Lu, Q. Xu, and C. Lu, Metall. Mater. Trans. B 49, 1136 https://doi.org/10.1007/s11663-018-1214-y (2018).

    Article  Google Scholar 

  15. C.-L. Fan, B.-C. Li, Y. Fu, and X.-J. Zhai, Trans. Nonferr. Met. Soc. China 20, 1166 https://doi.org/10.1016/s1003-6326(09)60273-9 (2010).

    Article  Google Scholar 

  16. W. Xiao, X. Chen, X. Liu, Z. Zhao, and Y. Li, Sep. Purif. Technol. 270, 118789 https://doi.org/10.1016/j.seppur.2021.118789 (2021).

    Article  Google Scholar 

  17. W. Xiao, Y. Li, Z. Zhao, and X. Liu, Sep. Purif. Technol. 276, 119375 https://doi.org/10.1016/j.seppur.2021.119375 (2021).

    Article  Google Scholar 

  18. F. Cui, W. Mu, Y. Zhai, and X. Guo, Sep. Purif. Technol. 239, 116577 https://doi.org/10.1016/j.seppur.2020.116577 (2020).

    Article  Google Scholar 

  19. Z.-Q. Ning, H.-W. Xie, Q.-S. Song, H.-Y. Yin, and Y.-C. Zhai, Rare Met. 38, 1199 https://doi.org/10.1007/s12598-019-01346-8 (2019).

    Article  Google Scholar 

  20. J. Liu, S. Wang, Y. Zhang, L. Zhang, and D. Kong, Appl. Surf. Sci. 589, 153032 https://doi.org/10.1016/j.apsusc.2022.153032 (2022).

    Article  Google Scholar 

  21. S. Çetintaş, and D. Bingöl, Miner. Eng. 157, 106562 https://doi.org/10.1016/j.mineng.2020.106562 (2020).

    Article  Google Scholar 

  22. H. Li, S. Li, J. Peng, C. Srinivasakannan, L. Zhang, and S. Yin, Ultrason. Sonochem. 40, 1021 https://doi.org/10.1016/j.ultsonch.2017.08.031 (2018).

    Article  Google Scholar 

  23. R. Balachandran, Z. Patterson, P. Deymier, S.A. Snyder, and M. Keswani, Chemosphere 147, 52 https://doi.org/10.1016/j.chemosphere.2015.12.066 (2016).

    Article  Google Scholar 

  24. P. Cao, C. Hao, C. Ma, H. Yang, and R. Sun, Ultrason. Sonochem. 76, 105626 https://doi.org/10.1016/j.ultsonch.2021.105626 (2021).

    Article  Google Scholar 

  25. C. Luo, J. Gu, X. Xu, P. Ma, H. Zhang, and X. Ren, Ultrason. Sonochem. 76, 105632 https://doi.org/10.1016/j.ultsonch.2021.105632 (2021).

    Article  Google Scholar 

  26. L. He, S. Yang, S. Shen, Y. Ma, Y. Chen, J. Xue, J. Wang, L. Zheng, L. Wu, Z. Zhang, and L. Yang, J. Hazard. Mater. 434, 128860 https://doi.org/10.1016/j.jhazmat.2022.128860 (2022).

    Article  Google Scholar 

  27. J. Abdi, A.J. Sisi, M. Hadipoor, and A. Khataee, J. Hazard. Mater. 424, 127558 https://doi.org/10.1016/j.jhazmat.2021.127558 (2022).

    Article  Google Scholar 

  28. V.S. Sutkar, and P.R. Gogate, Chem. Eng. J. 155, 26 https://doi.org/10.1016/j.cej.2009.07.021 (2009).

    Article  Google Scholar 

  29. A. Nevers, L. Hallez, F. Touyeras, and J.Y. Hihn, Ultrason. Sonochem. 40, 60 https://doi.org/10.1016/j.ultsonch.2017.02.033 (2018).

    Article  Google Scholar 

  30. J. Chen, Y. Lei, C. Zhu, C. Sun, Q. Xu, H. Cheng, X. Zou, and X. Lu, Hydrometallurgy 210, 105847 https://doi.org/10.1016/j.hydromet.2022.105847 (2022).

    Article  Google Scholar 

  31. S. Wang, W. Cui, G. Zhang, L. Zhang, and J. Peng, Ultrason. Sonochem. 36, 20 https://doi.org/10.1016/j.ultsonch.2016.11.013 (2017).

    Article  Google Scholar 

  32. F. Jiang, Y. Chen, S. Ju, Q. Zhu, L. Zhang, J. Peng, X. Wang, and J.D. Miller, Ultrason. Sonochem. 48, 88 https://doi.org/10.1016/j.ultsonch.2018.05.019 (2018).

    Article  Google Scholar 

  33. M. Aurousseau, N.T. Pham, and P. Ozil, Ultrason. Sonochem. 11, 23 https://doi.org/10.1016/s1350-4177(03)00130-5 (2004).

    Article  Google Scholar 

  34. L. Song, H. Di, M. Liang, K. Yang, and L. Zhang, Chem. Eng. Process. Process Intensif. 178, 109045 https://doi.org/10.1016/j.cep.2022.109045 (2022).

    Article  Google Scholar 

  35. D.G. Shchukin, E. Skorb, V. Belova, and H. Mohwald, Adv. Mater. 23, 1922 https://doi.org/10.1002/adma.201004494 (2011).

    Article  Google Scholar 

  36. C.M. Wu, and M.H. Chou, Compos. Sci. Technol. 127, 127 https://doi.org/10.1016/j.compscitech.2016.03.001 (2016).

    Article  Google Scholar 

  37. H. Li, Y. Ni, and J. Hong, Scr. Mater. 60, 524 https://doi.org/10.1016/j.scriptamat.2008.11.047 (2009).

    Article  Google Scholar 

  38. S. Kumar, and H.P. Lee, Appl. Phys. Lett. 116, 134103 https://doi.org/10.1063/5.0004520 (2020).

    Article  Google Scholar 

  39. W. Guan, L. Tan, X. Liu, Z. Cui, Y. Zheng, K.W.K. Yeung, D. Zheng, Y. Liang, Z. Li, S. Zhu, X. Wang, and S. Wu, Adv. Mater. 33, e2006047 https://doi.org/10.1002/adma.202006047 (2021).

    Article  Google Scholar 

  40. S. Mehrzad, E. Taban, P. Soltani, S.E. Samaei, and A. Khavanin, Build. Environ. 211, 108753 https://doi.org/10.1016/j.buildenv.2022.108753 (2022).

    Article  Google Scholar 

  41. C. Chen, Z. Du, G. Hu, and J. Yang, Appl. Phys. Lett. 110, 221903 https://doi.org/10.1063/1.4984095 (2017).

    Article  Google Scholar 

  42. J.H. Bang, and K.S. Suslick, Adv. Mater. 22, 1039 https://doi.org/10.1002/adma.200904093 (2010).

    Article  Google Scholar 

  43. M. Yang, and P. Sheng, Annu. Rev. Mater. Res. 47, 83 https://doi.org/10.1146/annurev-matsci-070616-124032 (2017).

    Article  Google Scholar 

  44. S. Ren, Y. Liu, W. Sun, H. Wang, Y. Lei, H. Wang, and X. Zeng, Appl. Acoust. 200, 109061 https://doi.org/10.1016/j.apacoust.2022.109061 (2022).

    Article  Google Scholar 

  45. T.G. Zieliński, N. Dauchez, T. Boutin, M. Leturia, A. Wilkinson, F. Chevillotte, F.-X. Bécot, and R. Venegas, Appl. Acoust. 197, 108941 https://doi.org/10.1016/j.apacoust.2022.108941 (2022).

    Article  Google Scholar 

  46. L. Zhang, W. Guo, J. Peng, J. Li, G. Lin, and X. Yu, Ultrason. Sonochem. 31, 143 https://doi.org/10.1016/j.ultsonch.2015.12.006 (2016).

    Article  Google Scholar 

  47. H. Li, S. Li, C. Srinivasakannan, L. Zhang, S. Yin, K. Yang, and H. Xie, Ultrason. Sonochem. 49, 118 https://doi.org/10.1016/j.ultsonch.2018.07.034 (2018).

    Article  Google Scholar 

  48. X. Li, P. Xing, X. Du, S. Gao, and C. Chen, Ultrason. Sonochem. 38, 84 https://doi.org/10.1016/j.ultsonch.2017.02.037 (2017).

    Article  Google Scholar 

  49. Y. Lei, X. Hu, C. Zhu, C. Sun, Q. Xu, H. Cheng, X. Zou, and X. Lu, Miner. Eng. 202, 108307 https://doi.org/10.1016/j.mineng.2023.108307 (2023).

    Article  Google Scholar 

  50. J.J. John, V. De Houwer, D. Van Mechelen, and T. Van Gerven, Ultrason. Sonochem. 69, 105239 https://doi.org/10.1016/j.ultsonch.2020.105239 (2020).

    Article  Google Scholar 

  51. K.H. Park, D. Mohapatra, and B.R. Reddy, Sep. Purif. Technol. 51, 332 https://doi.org/10.1016/j.seppur.2006.02.013 (2006).

    Article  Google Scholar 

  52. C. Zhu, Y. Lei, X. Hu, Q. Xu, X. Zou, H. Cheng, and X. Lu, Minerals 11, 1219 https://doi.org/10.3390/min11111219 (2021).

    Article  Google Scholar 

  53. W. Mu, F. Cui, H. Xin, Y. Zhai, and Q. Xu, Hydrometallurgy 191, 105187 https://doi.org/10.1016/j.hydromet.2019.105187 (2020).

    Article  Google Scholar 

  54. J. Zhang, X. Zhang, R. Wang, K. Wen, H. Xu, Z. Xiang, and X. Zhou, Sep. Purif. Technol. 315, 123680 https://doi.org/10.1016/j.seppur.2023.123680 (2023).

    Article  Google Scholar 

  55. W. Xin, C. Srinivasakannan, D. Xin-hui, P. Jin-hui, Y. Da-jin, and J. Shao-hua, Sep. Purif. Technol. 115, 66 https://doi.org/10.1016/j.seppur.2013.04.043 (2013).

    Article  Google Scholar 

  56. F. Huang, Y. Liao, J. Zhou, Y. Wang, and H. Li, Sep. Purif. Technol. 156, 572 https://doi.org/10.1016/j.seppur.2015.10.051 (2015).

    Article  Google Scholar 

  57. K. Zhang, B. Li, Y. Wu, W. Wang, R. Li, Y.N. Zhang, and T. Zuo, Waste Manag. 64, 236 https://doi.org/10.1016/j.wasman.2017.03.031 (2017).

    Article  Google Scholar 

  58. K. Park, D. Mohapatra, K. Hongin, and G. Xueyi, Sep. Purif. Technol. 56, 303 https://doi.org/10.1016/j.seppur.2007.02.013 (2007).

    Article  Google Scholar 

  59. S. Manickam, D. Camilla Boffito, E.M.M. Flores, J.-M. Leveque, R. Pflieger, B.G. Pollet, and M. Ashokkumar, Ultrason. Sonochem. 99, 106540 https://doi.org/10.1016/j.ultsonch.2023.106540 (2023).

    Article  Google Scholar 

  60. M. Daryabor, A. Ahmadi, and H. Zilouei, Ultrason. Sonochem. 34, 931 https://doi.org/10.1016/j.ultsonch.2016.07.014 (2017).

    Article  Google Scholar 

  61. P.B. Patil, S. Raut-Jadhav, and A.B. Pandit, Ultrason. Sonochem. 70, 105310 https://doi.org/10.1016/j.ultsonch.2020.105310 (2021).

    Article  Google Scholar 

  62. W. Lian, J. Wang, G. Wang, D. Gao, X. Li, Z. Zhang, W. Huang, X. Hao, and B. Hou, Fuel 268, 117364 https://doi.org/10.1016/j.fuel.2020.117364 (2020).

    Article  Google Scholar 

  63. X. Liu, S. Wang, Z. Peng, G. Zhang, Q. Gui, and L. Zhang, Sep. Purif. Technol. 308, 122995 https://doi.org/10.1016/j.seppur.2022.122995 (2023).

    Article  Google Scholar 

  64. M. Ashraf, Z.I. Zafar, and T.M. Ansari, Hydrometallurgy 80, 286 https://doi.org/10.1016/j.hydromet.2005.09.001 (2005).

    Article  Google Scholar 

  65. M.D. Rao, A. Meshram, H.R. Verma, K.K. Singh, and T.R. Mankhand, Hydrometallurgy 195, 105352 https://doi.org/10.1016/j.hydromet.2020.105352 (2020).

    Article  Google Scholar 

  66. M. Jelenčič, U. Orthaber, J. Mur, J. Petelin, and R. Petkovšek, Ultrason. Sonochem. 99, 106537 https://doi.org/10.1016/j.ultsonch.2023.106537 (2023).

    Article  Google Scholar 

  67. G.L. Chahine, B.E. Schmidt, X. Deng, C.T. Hsiao, and Q. Liu, Ultrason. Sonochem. 99, 106541 https://doi.org/10.1016/j.ultsonch.2023.106541 (2023).

    Article  Google Scholar 

  68. C. Sharma, P. Naik, A. Raval, L. Ramanan, M.A. Desai, J.K. Parikh, and S.R. Patel, Mater. Today Proc. 57, 2412 https://doi.org/10.1016/j.matpr.2022.01.173 (2022).

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support by National Natural Science Foundation of China (No. U2002214). The authors also thank the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher learning (TP2019041) and the Science and Technology Commission of Shanghai Municipality (No. 21DZ1208900) for financial support. We thank the Instrumental Analysis and Research Center of Shanghai University for materials characterization.

Author information

Authors and Affiliations

Authors

Contributions

CZ: Validation, data curation, writing—original draft. XH: Investigation, formal analysis. YL: Formal analysis. QX: Conceptualization, supervision. CS: Writing—review and editing. XZ: Conceptualization. HC: Methodology. XL: Methodology.

Corresponding authors

Correspondence to Qian Xu or Chenteng Sun.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 2856 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, C., Hu, X., Lei, Y. et al. Investigation on Kinetics and Mechanism of Energy Dissipation by Ultrasound-Assisted Leaching of Low-Nickel Matte. JOM 76, 418–431 (2024). https://doi.org/10.1007/s11837-023-06260-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-06260-0

Navigation