Skip to main content
Log in

Cascade e-Ion PlasmaTM: A Novel Technique for Enhancing Corrosion Resistance of Medium Carbon Low Alloy Steel

  • Surface Engineering for Improved Corrosion or Wear Resistance
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Electrochemical properties of cascade e-ion plasmaTM -treated and plasma-nitrided 4140 steel were investigated using surface characterization and electrochemical methods. Scanning electron microscopy, X-ray diffraction technique, and X-ray photoelectron spectroscopy revealed the formation of a compound layer and oxide layer on the surface of the plasma-nitrided and cascade e-ion plasmaTM-treated steel, respectively. Open circuit potential measurements indicated a better corrosion protection ability of the cascade e-ion plasmaTM treatment than plasma-nitriding with an anodic protection mechanism. The corrosion rate of the cascade e-ion plasmaTM-treated steel was 0.09 mpy, which is substantially lower than that of untreated steel. Electrochemical impedance spectroscopy supported the potentiodynamic investigations and indicated long-term protection. The composite layer of iron oxides and complex nitrides generated during cascade e-ion plasmaTM treatment protects the steel by inhibiting the transport of reacting species. The superhydrophobic surface topography of the cascade e-ion plasmaTM-treated steel seems to be contributing to the overall protection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig.4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J.R. Davis, Surface Engineering for Corrosion and Wear Resistance (ASM International, Ohio, 2005).

    Google Scholar 

  2. J. Wu, H. Liu, J. Li, X. Yang, and J. Hu, J. Alloys Compd. 680, 642 https://doi.org/10.1016/j.jallcom.2016.04.172 (2016).

    Article  Google Scholar 

  3. E. Boztepe, A.C. Alves, E. Ariza, L.A. Rocha, N. Cansever, and F. Toptan, Surf. Coat. Technol. 334, 116 https://doi.org/10.1016/j.surfcoat.2017.11.033 (2018).

    Article  Google Scholar 

  4. A. Gebeshuber and R. Trigueros, Surf. Coat. Technol. 21 (2017).

  5. N. Kumar, B. Ganguly, B. Roy, and B. Deb, JOM 73(12), 4309 https://doi.org/10.1007/s11837-021-04956-9 (2021).

    Article  Google Scholar 

  6. K. Khoo, M. Takeuchi, J. Onuki, and T. Komiyama, Mater. Trans. 45(3), 942 https://doi.org/10.2320/matertrans.45.942 (2004).

    Article  Google Scholar 

  7. S. Chang, Y. Wen, K.T. Huang, and C.M. Liu, Kovove Mater. 59, 109 https://doi.org/10.4149/km_2021_2_109 (2021).

    Article  Google Scholar 

  8. D. Kusmic, V. Hurby, and L. Bacharova, Kovove Mater. 54, 491 https://doi.org/10.4149/Km_2016_6_491 (2016).

    Article  Google Scholar 

  9. M. HeydarzadehSohi, M. Ebrahimi, A. Honarbakhsh Raouf, and F. Mahboubi, Mater. Des. Des. 31, 4432 https://doi.org/10.1016/j.matdes.2010.04.017 (2010).

    Article  Google Scholar 

  10. D. Krastev, in Corrosion Resistance. ed. by H. Shih (IntechOpen, Rijeka, 2012), p. 295.

    Google Scholar 

  11. R. Sola, G. Poli, P. Veronesi, and R. Giovanardi, Metall. Mater. Trans. A 45(6), 1 https://doi.org/10.1007/s11661-014-2219-z (2014).

    Article  Google Scholar 

  12. S.S. Deshpande, P.P. Deshpande, and M.J. Rathod, Mater. Today Proc. 50, 1979 https://doi.org/10.1016/j.matpr.2021.09.332 (2022).

    Article  Google Scholar 

  13. G. Reddy and J. Sekhar, US Patent # 6816671 B1—Mid temperature plasma device, Cincinnati, OH, US.

  14. J. Sekhar and M. Connelly, US patent # 9643877—Thermal Plasma Treatment Method, Cincinnati, OH, US.

  15. J. Sekhar, Entropy 23(8), 1092 https://doi.org/10.3390/e23081092 (2021).

    Article  MathSciNet  Google Scholar 

  16. M.C. Connelly, G.S. Reddy, M.N. Nadagouda, and J. Shekar, Clean Technol. Environ. Policy 19, 845 https://doi.org/10.1007/s10098-016-1272-2 (2017).

    Article  Google Scholar 

  17. J.A. Sekhar, Curr. Opin. Chem. Eng. 19, 94 https://doi.org/10.1016/j.coche.2017.12.002 (2018).

    Article  Google Scholar 

  18. N. Kalchayanand, R. Wang, T. Brown, and T.L. Wheeler, J. Food Prot. 86(3), 100040 https://doi.org/10.1016/j.jfp.2023.100040 (2023).

    Article  Google Scholar 

  19. V. Rajamani, R. Anand, G.S. Reddy, J.A. Sekhar, and M.A. Jog, Metall. Mater. Trans. B 37, 565 https://doi.org/10.1007/s11663-006-0040-9 (2006).

    Article  Google Scholar 

  20. R. Natarajan, N. Palaniswamy, M. Natesan, and V.S. Muralidharan, Open Corros. J. 2, 114 https://doi.org/10.2174/1876503300902010114 (2009).

    Article  Google Scholar 

  21. S.D. Chyou and H.C. Shih, Mater. Sci. Eng. A 129(1), 109 https://doi.org/10.1016/0921-5093(90)90349-8 (1990).

    Article  Google Scholar 

  22. K. Trinadh, C. Nouveau, A.S. Khanna, K.S. Aneja, and K.R. Rao, Mater. Res. Express 6, 1 (2019).

    Article  Google Scholar 

  23. P. Deshpande, S. Vagge, S. Jagtap, R. Khiarnar, S. Kelkar, and M. More, Bulg. Chem. Commun. 44(4), 318 (2012).

    Google Scholar 

  24. S.D. Chyou and H.C. Shih, Corrosion 47(1), 31 https://doi.org/10.5006/1.3585216 (1991).

    Article  Google Scholar 

  25. K.L. Chopra, Thin Film Phenomena (McGraw-Hill, New York, 1969).

    Google Scholar 

  26. M.A. Herman, W. Richter, and H. Sitter, Epitaxy: Physical Principles and Technical Implementation (Springer, Berlin, London, 2004).

    Book  Google Scholar 

  27. C.V. Thompson, J. Floro, and H.I. Smith, J. Appl. Phys. 67, 4099 (1990).

    Article  Google Scholar 

  28. S. Al Khateeb and T.D. Sparks, J. Mater. Res. 34, 2456 https://doi.org/10.1557/jmr.2019.208 (2019).

    Article  Google Scholar 

  29. A.S. Khanna, Introduction to High-Temperature Oxidation and Corrosion (ASM International, Ohio, 2002), pp72–85.

    Google Scholar 

  30. J. Wu, H. Liu, X. Ye, Y. Chai, and J. Hu, J. Alloys Compd. 632, 397 (2015).

    Article  Google Scholar 

  31. L.L. Shreir, in Shreir’s Corrosion: Basic Concepts, High-Temperature Corrosion. ed. by R.A. Cottis (Elsevier, 2010).

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. M.G. Kulthe, Head, Department of Metallurgy and Materials Engineering, COEP Technological University, Pune for providing facilities, and Prof. Sudhir Agashe, Vice Chancellor, COEP Technological University, Pune for his continuous encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swapnil S. Deshpande.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deshpande, S.S., Deshpande, P.P. & Rathod, M.J. Cascade e-Ion PlasmaTM: A Novel Technique for Enhancing Corrosion Resistance of Medium Carbon Low Alloy Steel. JOM 76, 268–276 (2024). https://doi.org/10.1007/s11837-023-06256-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-06256-w

Navigation