Skip to main content
Log in

Recycling of Yttrium and Europium from Microwave-Roasted Waste Cathode Ray Tube Phosphor Powder

  • Recent Developments on Metals and Energy Extraction from Waste Streams
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Waste cathode ray tubes (CRT) containing a high quantity of yttrium and europium have great potential for the resource circulation of rare earths through an efficient recycling process. This study examined how the removal of zinc from a CRT that had been microwave-roasted at various temperatures (600–800°C) affected the various mineral phases of rare earths. The parameters like acid medium, concentration, temperature, and time were varied to yield about 99% leaching efficiency using 2.0 mol/L HCl at 5% pulp density for 60 min of leaching performed at 90°C. The apparent activation energy values (Ea(Y), 22.1 kJ/mol, and Ea(Eu), 16.7 kJ/mol) show that the leaching follows an intermediate-controlled mechanism by following the logarithmic rate law. Finally, the mixed oxalate precipitation at the stoichiometric ratio of REE3+:C2O42– = 1:1.5 gave high-purity (Y,Eu)2(C2O4)3 salt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M. Bellis, Television History and the Cathode Ray Tube (Thought Co., 2017). https://www.thoughtco.com/television-history-cathode-ray-tube-1991459. Accessed 28 May 2023.

  2. D. Katzmaier, Remember when TVs weighed 200 pounds? A look back at TV trends over the years (CNET, 2020). https://www.cnet.com/tech/home-entertainment/remember-when-tvs-weighed-200-pounds-a-look-back-at-tv-trends-over-the-years/. Accessed 10 June 2023.

  3. X. Tian, X. Yin, Y. Wu, Z. Tan, and P. Xu, J. Clean. Prod. 135, 1210 https://doi.org/10.1016/j.jclepro.2016.07.044 (2016).

    Article  CAS  Google Scholar 

  4. N. Singh, J. Wang, and J. Li, Procedia Environ. Sci. 31, 465 https://doi.org/10.1016/j.proenv.2016.02.050 (2016).

    Article  Google Scholar 

  5. M.A.R. Onal and K. Binnemans, Hydrometallurgy 183, 60 https://doi.org/10.1016/j.hydromet.2018.11.005 (2019).

    Article  CAS  Google Scholar 

  6. F. Forte, L. Yurramendi, J.L. Aldana, B. Onghena, and K. Binnemans, RSC Adv. 9, 1378 https://doi.org/10.1039/c8ra08158a (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. J. Dexpert-Ghys, S. Regnier, S. Canac, T. Beaudette, P. Guillot, B. Caillier, R. Mauricot, J. Navarro, and S. Sekhri, J. Lumin. 129, 1968 https://doi.org/10.1016/j.jlumin.2009.04.080 (2009).

    Article  CAS  Google Scholar 

  8. G. Prameswara, I. Trisnawati, P. Mulyono, A. Prasetya, and H.T.B.M. Petrus, JOM 73, 988 https://doi.org/10.1007/s11837-021-04584-3 (2021).

    Article  ADS  CAS  Google Scholar 

  9. N. Shukla and N. Dhawan, JOM 73, 1090 https://doi.org/10.1007/s11837-021-04588-z (2021).

    Article  ADS  CAS  Google Scholar 

  10. S. Ilyas, H. Kim, and R.R. Srivastava, JOM 73, 19 https://doi.org/10.1007/s11837-020-04471-3 (2021).

    Article  ADS  CAS  Google Scholar 

  11. S. Choi, S. Ilyas, and H. Kim, JOM 74, 1054 https://doi.org/10.1007/s11837-021-05112-z (2022).

    Article  ADS  CAS  Google Scholar 

  12. S. Suman, D.K. Rajak, and Z.H. Ansari, Geosyst. Eng. https://doi.org/10.1080/12269328.2023.2199014 (2023).

    Article  Google Scholar 

  13. T.H. Huynh, V.H. Ha, and M.T. Vu, Geosyst. Eng. 25(3–4), 150 https://doi.org/10.1080/12269328.2022.2156399 (2023).

    Article  CAS  Google Scholar 

  14. Y. Long, Y. Feng, S. Cai, L. Hu, and D. Shen, J. Hazard. Mater. 272, 59 https://doi.org/10.1016/j.jhazmat.2014.02.048 (2014).

    Article  CAS  PubMed  Google Scholar 

  15. X. Yin, Y. Wu, X. Tian, J. Yu, Y.N. Zhang, and T. Zu, ACS Sustain. Chem. Eng. 4, 7080 https://doi.org/10.1021/acssuschemeng.6b01965 (2016).

    Article  CAS  Google Scholar 

  16. X. Tian, X. Yin, Y. Gong, Y. Wu, Z. Tan, and P. Xu, J. Clean. Prod. 135, 1210 https://doi.org/10.1016/j.jclepro.2016.07.044 (2016).

    Article  CAS  Google Scholar 

  17. K. Binnemans, P.T. Jones, B. Blanpain, T. Van Gerven, Y. Yang, A. Walton, and M. Buchert, J. Clean. Prod. 51, 1 https://doi.org/10.1016/j.jclepro.2012.12.037 (2013).

    Article  CAS  Google Scholar 

  18. V. Innocenzi, I. De Michelis, F. Ferella, F. Beolchini, B. Kopacek, and F. Vegliò, Waste Manag. 33(11), 2364 https://doi.org/10.1016/j.wasman.2013.07.006 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. X. Pan, L. Peng, W. Chen, J. Wang, and Z. Chen, Appl. Mech. Mater. 295–298, 1840 https://doi.org/10.4028/www.scientific.net/AMM.295-298.1840 (2013).

    Article  CAS  Google Scholar 

  20. D. Kalebic, W. Dehaen, and J. Spooren, Ind. Eng. Chem. Res. 61, 13303 https://doi.org/10.1021/acs.iecr.2c02043 (2022).

    Article  CAS  Google Scholar 

  21. F. Habashi, Principles of Extractive Metallurgy: Hydrometallurgy, vol I. (Gordon and Breach Science Publishers Inc, New York, 1969).

    Google Scholar 

  22. O. Levenspiel, Chemical Reaction Engineering, 3rd edn. (John Wiley & Sons Inc, 1999).

    Google Scholar 

  23. H.A. Cheema, I.A. Bhatti, R.R. Srivastava, N. Jahan, and M.A. Zia, Chem. Pap. 76(7), 4049 https://doi.org/10.4491/eer.2018.392 (2022).

    Article  CAS  Google Scholar 

  24. S. Ilyas, R.R. Srivastava, H. Kim, and N. Ilyas, Chemosphere 286(3), 131978 https://doi.org/10.1016/j.chemosphere.2021.131978 (2022).

    Article  CAS  PubMed  Google Scholar 

  25. D.K. Rajak, C. Guria, L. Gope, and J.A. Jibran, Geosyst. Eng. https://doi.org/10.1080/12269328.2023.2208124 (2023).

    Article  Google Scholar 

  26. S. Ilyas, R.R. Srivastava, and H. Kim, Sep. Purif. Technol. 254, 117634 https://doi.org/10.1016/j.seppur.2020.117634 (2021).

    Article  CAS  Google Scholar 

  27. S. Ilyas, H. Kim, R.R. Srivastava, and S. Choi, J. Clean. Prod. 278, 123435 https://doi.org/10.1016/j.jclepro.2020.123435 (2021).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (project no. 2023-00243477) and a grant funded by the Korea Government (MSIT) (no. 2022R1A5A1032539).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rajiv Ranjan Srivastava, Sadia Ilyas or Hyunjung Kim.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastava, R.R., Ilyas, S., Rajak, D.K. et al. Recycling of Yttrium and Europium from Microwave-Roasted Waste Cathode Ray Tube Phosphor Powder. JOM 76, 1429–1436 (2024). https://doi.org/10.1007/s11837-023-06252-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-06252-0

Navigation