Skip to main content
Log in

Recovery of Lithium from Beta-Spodumene Through Serial Calcination and Water Leaching with CaO

  • Recent Developments on Metals and Energy Extraction from Waste Streams
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Lithium recovery from β-spodumene was conducted using a hydrometallurgical process consisting of water leaching and calcination. Water leaching experiments were conducted using a mixture of β-spodumene and CaO. The effect of experimental parameters such as the particle size of β-spodumene, reaction temperature, reaction time, and mass ratio of CaO to β-spodumene on the lithium leaching efficiency was investigated. The Ca(OH)2 and CaCO3 in the leach residue were converted to CaO by calcination at 900°C. The calcined product was recycled into in the leaching process to recover additional lithium. Four leaching stages based on a 75-μm particle undersize, reaction temperature of 100°C, 3:1 mass ratio of CaO to β-spodumene, and overall reaction time of 9 h resulted in 97% lithium yield from spodumene. The process developed in this work succeeded in reducing the overall amount of chemicals used relative to the conventional spodumene treatment process, allowing for the effective leaching of lithium through a simple hydrometallurgical process. In addition, given that the final leach residue consisted of Ca(OH)2 and CaCO3, it could be reused in the water leaching process following calcination, further contributing to the sustainability of the proposed process

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A. Chagnes, and J. Światowska, Lithium Process Chemistry: Resources, Extraction, Batteries, and Recycling (Elsevier, Amsterdam, 2015).

    Google Scholar 

  2. USGS, Mineral commodity summaries 2022 (US Geological Survey, 2022).

  3. F. Wang, J.D. Harindintwali, Z. Yuan, M. Wang, F. Wang, S. Li, Z. Yin, L. Huang, Y. Fu, L. Li, S.X. Chang, L. Zhang, J. Rinklebe, Z. Yuan, Q. Zhu, L. Xiang, D.C.W. Tsang, L. Xu, X. Jiang, J. Liu, N. Wei, M. Kästner, Y. Zou, Y.S. Ok, J. Shen, D. Peng, W. Zhang, D. Barceló, Y. Zhou, Z. Bai, B. Li, B. Zhang, K. Wei, H. Cao, Z. Tan, L.-B. Zhao, X. He, J. Zheng, N. Bolan, X. Liu, C. Huang, S. Dietmann, M. Luo, N. Sun, J. Gong, Y. Gong, F. Brahushi, T. Zhang, C. Xiao, X. Li, W. Chen, N. Jiao, J. Lehmann, A. Schäffer, J.M. Tiedje, and J.M. Chen, Innovation. https://doi.org/10.1016/j.xinn.2021.100180 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  4. International Energy Agency, Global EV Outlook 2021: Accelerating ambitions despite the pandemic (2021). https://doi.org/10.1787/3a394362-en.

  5. K. Kim, K-Battery’s opportunities and challenges. Presentation at Korea Advanced Battery Conference (KABC 2021), SNe Research, 13–14 October 2021.

  6. D.E. Garrett, Handbook of Lithium and Natural Calcium Chloride (Elsevier, Amsterdam, 2004).

    Google Scholar 

  7. H. Li, J. Eksteen, and G. Kuang, Hydrometallurgy. https://doi.org/10.1016/j.hydromet.2019.105129 (2019).

    Article  Google Scholar 

  8. L.I. Barbosa, J.A. González, and M.D.C. Ruiz, Thermochim. Acta. https://doi.org/10.1016/j.tca.2015.02.009 (2015).

    Article  Google Scholar 

  9. G. Kuang, Y. Liu, H. Li, S. Xing, F. Li, and H. Guo, Hydrometallurgy. https://doi.org/10.1016/j.hydromet.2018.02.015 (2018).

    Article  Google Scholar 

  10. G.D. Rosales, M.C. Ruiz, and M.H. Rodriguez, Chem. Eng. Res. Des. https://doi.org/10.1016/j.cherd.2019.08.009 (2019).

    Article  Google Scholar 

  11. G.D. Rosales, M.C. Ruiz, and M.H. Rodriguez, Minerals. https://doi.org/10.3390/min6040098 (2016).

    Article  Google Scholar 

  12. G.D. Rosales, M.C. Ruiz, and M.H. Rodriguez, Hydrometallurgy. https://doi.org/10.1016/j.hydromet.2014.04.009 (2014).

    Article  Google Scholar 

  13. L.S. Santos, R.M. Nascimento, and S.B.C. Pergher, Chem. Eng. Res. Des. https://doi.org/10.1016/j.cherd.2019.05.019 (2019).

    Article  Google Scholar 

  14. B.R. Davis, M.S. Moats, and S. Wang, Extraction 2018—Proceedings of the First Global Conference on Extractive Metallurgy (Springer, Cham, 2018).

    Book  Google Scholar 

  15. K.M. Hill and H. Knott, The Design of plants for handling hydrofluoric acid. Paper presented at Symposium on Chemical Process Hazards, Institution of Chemical Engineers, 1960

  16. M. Kenny and T. Oates, Lime and Limestone, in: Ullmann’s Encyclopedia of Industrial Chemistry (Wiley-VCH Verlag GmbH & Co. Weinheim, 2007) https://doi.org/10.1002/14356007.a15_317.pub2

  17. G.H. Beall, M. Comte, M.J. Dejneka, P. Marques, P. Pradeau, and C. Smith, Front. Mater. https://doi.org/10.3389/fmats.2016.00041 (2016).

    Article  Google Scholar 

  18. A. Ezaami, E.S. Jmal, I. Chaaba, W.C. Koubaa, A. Cheikhrouhou, and E.K. Hlil, J. Alloys Compd. https://doi.org/10.1016/j.jallcom.2016.05.332 (2016).

    Article  Google Scholar 

  19. J.K. Guy, and R.E. Martin, Solid State Ion. https://doi.org/10.1016/j.ssi.2008.03.005 (2008).

    Article  Google Scholar 

  20. R. Kr, S. Nishant, and K. Dinesh, Appl. Phys. https://doi.org/10.1007/s00339-020-04233-7 (2021).

    Article  Google Scholar 

  21. N. Manjula, M. Pugalenthi, V.S. Nagarethinam, K. Usharani, and A.R. Balu, Mater. Sci. Pol. https://doi.org/10.1515/msp-2015-0115 (2015).

    Article  Google Scholar 

  22. V.I. Merupo, S. Velumani, M. Bizarro, A. Kassiba, Structural, morphological and optical properties of sol-gel prepared Cu doped BiVO4 powders. Paper presented at the 12th International Conference on Electrical Engineering, Computing, Science and Automatic Control (CCE), IEEE, Mexico City, Mexico, 2830 October, 2015. https://doi.org/10.1109/ICEEE.2015.7357978

  23. Y. Marcus, Chem. Rev. https://doi.org/10.1021/cr00090a003 (1998).

    Article  Google Scholar 

  24. Z. Mirghiasi, F. Bakhtiari, E. Darezereshki, and E. Esmaeizadeh, J. Ind. Eng. Chem. https://doi.org/10.1016/j.jiec.2013.04.018 (2014).

    Article  Google Scholar 

  25. HSC Chemistry software for windows Ver. 6.1. 2006.

Download references

Acknowledgements

This work was supported by the Basic Research Project (GP2020-013) of the Korea Institute of Geoscience and Mineral Resources (KIGAM), funded by the Ministry of Science, ICT of the Republic of Korea

Author information

Authors and Affiliations

Authors

Contributions

DL: Writing-Original draft preparation, Software, Investigation, Visualization, Data curation. Y-YJ: Writing-Reviewing and Editing, Methodology, Resources, Validation. DJS: Writing-Reviewing and Editing, Methodology, Software, Validation. SMS: Conceptualization, Methodology, Supervision, Writing-Reviewing and Editing, Project administrator.

Corresponding author

Correspondence to Shun Myung Shin.

Ethics declarations

Competing interest

All the authors confirm that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, D., Joo, YY., Shin, D.J. et al. Recovery of Lithium from Beta-Spodumene Through Serial Calcination and Water Leaching with CaO. JOM 76, 1477–1484 (2024). https://doi.org/10.1007/s11837-023-06213-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-06213-7

Navigation