Skip to main content

Advertisement

Log in

Experimental Investigation of TiO2 Pigment Production by Electrodialysis Process from Ilmenite Concentrate

  • Characterization of Interactions between Materials and External Fields
  • Published:
JOM Aims and scope Submit manuscript

Abstract

A laboratory-scale setup has been developed for the electrodialysis (ED) of solutions containing titanium which were prepared from the leaching of ilmenite concentrate in concentrated sulfuric acid. The final product was high-purity TiO2 pigment. The operating parameters, including initial feed concentration (17–28 g/L−1 of titanium and 9–10.2 g/L−1 of iron), input voltage (30–60 V), and flow rate (70–220 mL/min−1) were evaluated during the ED process. Increasing the input voltage raised the recovery efficiency up to 91% with a feed concentration of 17 g/L−1 of titanium and a flow rate of 70 mL min−1. However, increasing the feed concentration enhanced the recovery efficiency up to 96%. The maximum current efficiency achieved was 20.37% at 60 Vs and feed concentrations of 17 g/L−1 of titanium and 9 g/L−1 of iron. The values of the cation transfer number for separating Fe2+ from solutions containing titanium are in the range of 0.72–0.81. The TiO2 pigment was produced by hydrolysis and calcination of the outlet solution. The produced pigments were analyzed by X-ray diffraction and field-emission scanning electron microscopy. The results showed that the produced TiO2 pigments are composed of the anatase phase as a major component with an average purity of 97%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A. Gupta, R. Khatirkar, and J. Singh, J. Alloys Compd. 899, 163242 https://doi.org/10.1016/j.jallcom.2021.163242 (2022).

    Article  Google Scholar 

  2. R.R. Boyer, JOM 46, 20–23 https://doi.org/10.1007/BF03220743 (1994).

    Article  Google Scholar 

  3. A.H. Plaine, M.R. da Silva, and C. Bolfarini, J. Alloys Compd. 800, 35–40 https://doi.org/10.1016/j.jallcom.2019.06.049 (2019).

    Article  Google Scholar 

  4. G. Louarn, L. Salou, A. Hoornaert, and P. Layrolle, J. Mater. Res. 34, 1892–1899 https://doi.org/10.1557/jmr.2019.39 (2019).

    Article  Google Scholar 

  5. M. Niinomi, T. Hattori, K. Morikawa, T. Kasuga, A. Suzuki, H. Fukui, and S. Niwa, Mater. Trans. 43, 2970–2977 https://doi.org/10.2320/matertrans.43.2970 (2002).

    Article  Google Scholar 

  6. M.L. Kotsar, S.A. Lavrikov, V.I. Nikonov, A.V. Aleksandrov, S.G. Akhtonov, and A.V. Aleksandrov, At. Energ. 111, 92–98 https://doi.org/10.1007/s10512-011-9459-4 (2011).

    Article  Google Scholar 

  7. I. Ali, M. Suhail, Z.A. Alothman, and A. Alwarthan, RSC Adv. 8, 30125–30147 (2018).

    Article  Google Scholar 

  8. G. Pfaff, High Performance Pigments, pp. 75–104 (2009).

  9. F.J. Maile, G. Pfaff, and P. Reynders, Progress Org. Coat. 54, 150–163 https://doi.org/10.1016/j.porgcoat.2005.07.003 (2005).

    Article  Google Scholar 

  10. A. Fujishima, and K. Honda, Nature 238, 37–38 https://doi.org/10.1038/238037a0 (1972).

    Article  Google Scholar 

  11. B. Anitha, and M.A. Khadar, Solid State Sci. 108, 106392 https://doi.org/10.1016/j.solidstatesciences.2020.106392 (2020).

    Article  Google Scholar 

  12. M.R. Hoffmann, S.T. Martin, W. Choi, and D.W. Bahnemann, Chem. Rev. 95, 69–96 https://doi.org/10.1021/cr00033a004 (1995).

    Article  Google Scholar 

  13. T. Kaida, K. Kobayashi, M. Adachi, and F. Suzuki, J. Cosmet. Sci. 55, 219–220 (2004).

    Google Scholar 

  14. J.J. Wang, B.J. Sanderson, and H. Wang, Mutat. Res. 628, 99–106 https://doi.org/10.1016/j.mrgentox.2006.12.003 (2007).

    Article  Google Scholar 

  15. M.B. Heringa, R.J.B. Peters, R.L.A.W. Bleys, M.K. van der Lee, P.C. Tromp, P.C.E. van Kesteren, J.C.H. van Eijkeren, A.K. Undas, A.G. Oomen and H. Bouwmeester, (2018). https://doi.org/10.1186/s12989-018-0251-7

  16. L. Hu, C. Xu, L. Peng, F.L. Gu, and W. Yang, J. Mater. Chem. A 6, 15027–15032 https://doi.org/10.1039/C8TA04140G) (2018).

    Article  Google Scholar 

  17. X. Pan, M.-Q. Yang, X. Fu, N. Zhang, and Y.-J. Xu, Nanoscale 5, 3601–3614 https://doi.org/10.1039/C3NR00476G) (2013).

    Article  Google Scholar 

  18. V.E. Henrich, Rep. Prog. Phys. 48, 1481–1541 https://doi.org/10.1088/0034-4885/48/11/001 (1985).

    Article  Google Scholar 

  19. J. Akimoto, Y. Gotoh, Y. Oosawa, N. Nonose, T. Kumagai, K. Aoki, and H. Takei, J. Solid State Chem. 113(27), 36 https://doi.org/10.1006/jssc.1994.1337 (1994).

    Article  Google Scholar 

  20. Z. Noorimotlagh, I. Kazeminezhad, N. Jaafarzadeh, M. Ahmadi, and Z. Ramezani, Catal. Today 348, 277–289 https://doi.org/10.1016/j.cattod.2019.08.051 (2020).

    Article  Google Scholar 

  21. G. Auer, W.-D. Griebler and B. Jahn, Industrial Inorganic Pigments, pp. 51–97 (2005).

  22. V. Kordzadeh-Kermani, M. Schaffie, H. Hashemipour Rafsanjani, and M. Ranjbar, Hydrometallurgy 198, 105507 https://doi.org/10.1016/j.hydromet.2020.105507 (2020).

    Article  Google Scholar 

  23. T. Schirmer, M. Achimovičová, and D. Goldmann, Hydrometallurgy 191, 105250 https://doi.org/10.1016/j.hydromet.2020.105250 (2020).

    Article  Google Scholar 

  24. J. Xiang, G. Pei, W. Lv, S. Liu, X. Lv, and G. Qiu, Chem. Eng. Proces. Process Intensif. 147, 107774 https://doi.org/10.1016/j.cep.2019.107774 (2020).

    Article  Google Scholar 

  25. Y. Liu, T. Qi, J. Chu, Q. Tong, and Y. Zhang, Int. J. Miner. Process. 81, 79–84 https://doi.org/10.1016/j.minpro.2006.07.003 (2006).

    Article  Google Scholar 

  26. V. Shojaei, M. Schaffie, A. Mohebbi, and M. Ranjbar, Mater. Manuf. Process. 29, 1284–1288 https://doi.org/10.1080/10426914.2014.941485 (2014).

    Article  Google Scholar 

  27. H.H. Ahn, and M.S. Lee, Miner. Process. Extr. Metall. Rev. 42, 312–320 https://doi.org/10.1080/08827508.2020.1740217 (2021).

    Article  Google Scholar 

  28. L. Palliyaguru, N.D.H. Arachchi, C.D. Jayaweera, and P.M. Jayaweera, Miner. Process. Extr. Metall. 127, 169–175 https://doi.org/10.1080/03719553.2017.1331621 (2018).

    Article  Google Scholar 

  29. B. Sun, M. Zhang, S. Huang, Z. Cao, L. Lu, and X. Zhang, Separ. Purif. Technol. 281, 119907 https://doi.org/10.1016/j.seppur.2021.119907 (2022).

    Article  Google Scholar 

  30. S. Al-Amshawee, M.Y.B.M. Yunus, A.A.M. Azoddein, D.G. Hassell, I.H. Dakhil, and H.A. Hasan, Chem. Eng. J. 380, 122231 https://doi.org/10.1016/j.cej.2019.122231 (2020).

    Article  Google Scholar 

  31. Q. Li, J. Huang, Y. Zhang, and Q. Zheng, J. Clean. Prod. 340, 130801 https://doi.org/10.1016/j.jclepro.2022.130801 (2022).

    Article  Google Scholar 

  32. J.-M. Aran Jauve, F.M.S. Christensen, Y. Wang, and Z. Wei, Chem. Eng. J. 435, 134857 https://doi.org/10.1016/j.cej.2022.134857 (2022).

    Article  Google Scholar 

  33. L. Gurreri, A. Tamburini, A. Cipollina, and G. Micale, Membranes. https://doi.org/10.3390/membranes10070146 (2020).

    Article  Google Scholar 

  34. G.C. Feijoo, K.S. Barros, T. Scarazzato, and D.C.R. Espinosa, Separ. Purif. Technol. 275, 119192 https://doi.org/10.1016/j.seppur.2021.119192 (2021).

    Article  Google Scholar 

  35. T. Scarazzato, Z. Panossian, J.A.S. Tenório, V. Pérez-Herranz, and D.C.R. Espinosa, Desalination 436, 114–124 https://doi.org/10.1016/j.desal.2018.01.005 (2018).

    Article  Google Scholar 

  36. K.S. Barros, T. Scarazzato, V. Pérez-Herranz, and D.C. Espinosa, Membranes. https://doi.org/10.3390/membranes10040069 (2020).

    Article  Google Scholar 

  37. R.F. Dalla Costa, C.W. Klein, A.M. Bernardes, and J. Zoppas Ferreira, J. Braz. Chem. Soc. 13, 540–547 (2002).

    Article  Google Scholar 

  38. M. Zafari, T. Kikhavani, and S.N. Ashrafizadeh, J. Environ. Chem. Eng. 10, 107014 https://doi.org/10.1016/j.jece.2021.107014 (2022).

    Article  Google Scholar 

  39. K.H. Chan, M. Malik, and G. Azimi, Resour. Conserv. Recycl. 178, 106076 https://doi.org/10.1016/j.resconrec.2021.106076 (2022).

    Article  Google Scholar 

  40. R. Pärnamäe, S. Mareev, V. Nikonenko, S. Melnikov, N. Sheldeshov, V. Zabolotskii, H.V.M. Hamelers, and M. Tedesco, J. Membr. Sci. 617, 118538 https://doi.org/10.1016/j.memsci.2020.118538 (2021).

    Article  Google Scholar 

  41. K.S. Barros, T. Scarazzato, and D.C.R. Espinosa, Separ. Purif. Technol. 193, 184–192 https://doi.org/10.1016/j.seppur.2017.10.067 (2018).

    Article  Google Scholar 

  42. M.A.S. Rodrigues, F.D.R. Amado, M.R. Bischoff, C.A. Ferreira, A.M. Bernardes, and J.Z. Ferreira, Desalination 227, 241–252 https://doi.org/10.1016/j.desal.2007.07.018 (2008).

    Article  Google Scholar 

  43. T. Benvenuti, M. García-Gabaldón, E.M. Ortega, M.A.S. Rodrigues, A.M. Bernardes, V. Pérez-Herranz, and J. Zoppas-Ferreira, J. Membr. Sci. 542, 320–328 https://doi.org/10.1016/j.memsci.2017.08.021 (2017).

    Article  Google Scholar 

  44. M.C. Martí-Calatayud, M. García-Gabaldón, and V. Pérez-Herranz, J. Membr. Sci. 443, 181–192 https://doi.org/10.1016/j.memsci.2013.04.058 (2013).

    Article  Google Scholar 

  45. M. Nemati, S.M. Hosseini, and M. Shabanian, J. Hazard. Mater. 337, 90–104 https://doi.org/10.1016/j.jhazmat.2017.04.074 (2017).

    Article  Google Scholar 

  46. E. Jashni, and S.M. Hosseini, Separ. Purif. Technol. 234, 116118 https://doi.org/10.1016/j.seppur.2019.116118 (2020).

    Article  Google Scholar 

  47. K.N. Mani, J. Membr. Sci. 58, 117–138 https://doi.org/10.1016/S0376-7388(00)82450-3 (1991).

    Article  Google Scholar 

  48. K.-J. Liu, K. Nagasubramanian, and F.P. Chlanda, J. Membr. Sci. 3, 71–83 https://doi.org/10.1016/S0376-7388(00)80413-5 (1978).

    Article  Google Scholar 

  49. W. Ye, J. Huang, J. Lin, X. Zhang, J. Shen, P. Luis, and B. Van der Bruggen, Separ. Purif. Technol. 144, 206–214 https://doi.org/10.1016/j.seppur.2015.02.031 (2015).

    Article  Google Scholar 

  50. A. Güvenç, and B. Karabacakolu, Desalination 172, 7–17 https://doi.org/10.1016/j.desal.2004.06.193 (2005).

    Article  Google Scholar 

  51. Q.-B. Chen, Z.-Y. Ji, J. Liu, Y.-Y. Zhao, S.-Z. Wang, and J.-S. Yuan, J. Membr. Sci. 548, 408–420 https://doi.org/10.1016/j.memsci.2017.11.040 (2018).

    Article  Google Scholar 

  52. M.R. Jakobsen, J. Fritt-Rasmussen, S. Nielsen, and L.M. Ottosen, J. Hazard. Mater. 106, 127–132 https://doi.org/10.1016/j.jhazmat.2003.10.005 (2004).

    Article  Google Scholar 

  53. J. Sun, X. Su, Z. Liu, J. Liu, Z. Ma, Y. Sun, X. Gao, and J. Gao, J. Ocean Univ. China 19, 135–142 https://doi.org/10.1007/s11802-020-4069-1 (2020).

    Article  Google Scholar 

  54. V. Bhadja, J.S. Trivedi, and U. Chatterjee, RSC Adv. 6, 67118–67126 https://doi.org/10.1039/C6RA11450D (2016).

    Article  Google Scholar 

  55. Y. Zhang, J. Zhou, and Z. Li, J. Chem. Eng. Data 62, 973–979 https://doi.org/10.1021/acs.jced.6b00783 (2017).

    Article  Google Scholar 

  56. D. Lundberg, and I. Persson, J. Solution Chem. 46, 476–487 https://doi.org/10.1007/s10953-017-0581-3 (2017).

    Article  Google Scholar 

  57. K.G. Knauss, M.J. Dibley, W.L. Bourcier, and H.F. Shaw, Appl. Geochem. 16, 1115–1128 https://doi.org/10.1016/S0883-2927(00)00081-0 (2001).

    Article  Google Scholar 

  58. S. Middlemas, Z.Z. Fang, and P. Fan, Hydrometallurgy 131–132, 107–113 https://doi.org/10.1016/j.hydromet.2012.11.002 (2013).

    Article  Google Scholar 

  59. M. Alrbai, H.S. Hayajneh, A. Omar, M.A. Alkader, and H. Al-Riaty, Solar Energy 224, 390–400 https://doi.org/10.1016/j.solener.2021.06.028 (2021).

    Article  Google Scholar 

  60. T. Mohammadi, A. Moheb, M. Sadrzadeh, and A. Razmi, Separ. Purif. Technol. 41, 73–82 https://doi.org/10.1016/j.seppur.2004.04.007 (2005).

    Article  Google Scholar 

  61. Y.D. Raka, R. Bock, H. Karoliussen, Ø. Wilhelmsen, and O. Stokke Burheim, Membranes. https://doi.org/10.3390/membranes11020135 (2021).

    Article  Google Scholar 

  62. J. Balster, O. Krupenko, I. Pünt, D.F. Stamatialis, and M. Wessling, J. Membr. Sci. 263, 137–145 https://doi.org/10.1016/j.memsci.2005.04.019 (2005).

    Article  Google Scholar 

  63. M.P. Mier, R. Ibañez, and I. Ortiz, Separ. Purif. Technol. 59, 197–205 https://doi.org/10.1016/j.seppur.2007.06.015 (2008).

    Article  Google Scholar 

  64. C. Casademont, M.A. Farias, G. Pourcelly, and L. Bazinet, J. Membr. Sci. 325, 570–579 https://doi.org/10.1016/j.memsci.2008.08.023 (2008).

    Article  Google Scholar 

  65. Y. Song, and Z. Zhao, Separ. Purif. Technol. 206, 335–342 https://doi.org/10.1016/j.seppur.2018.06.022 (2018).

    Article  Google Scholar 

  66. L. Cifuentes, I. García, P. Arriagada, and J.M. Casas, Separ. Purif. Technol. 68, 105–108 https://doi.org/10.1016/j.seppur.2009.04.017 (2009).

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the Iranian Mine and Mining Industries Development and Renovation Organization (IMIDRO) [Grant Number 21349, 2020].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amirhossein Meysami.

Ethics declarations

Conflict of interest

Amirhossein Meysami reports financial support was provided by Iranian Mine and Mining Industries Development and Renovation Organization (IMIDRO).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 128 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meysami, A., Golestani, A., Khangah, A.H. et al. Experimental Investigation of TiO2 Pigment Production by Electrodialysis Process from Ilmenite Concentrate. JOM 75, 5176–5187 (2023). https://doi.org/10.1007/s11837-023-06185-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-06185-8

Navigation