Skip to main content
Log in

Effect of Cryorolling After Pre-aging on Tensile Properties and Microstructures of AA7075 Plates

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

To explore the influence of deformation temperature on the tensile and microstructure of high-strength Al alloy, pre-aged AA7075 sheets were processed by cryorolling and room temperature rolling. Hardness and tensile tests examined the mechanical properties of AA7075. The microstructures of AA7075 under different rolling conditions were analyzed by scanning electron microscopy, optical microscopy, x-ray diffraction, electron backscatter diffraction and transmission electron microscope. The results show that the ultimate tensile strength and hardness of cryorolled AA7075 are 672.6 MPa and 226.6 HV, respectively. When the rolling reduction rate reaches 60%, the cryorolled AA7075 remains great ductility of 5.7%. The cryorolling can effectively result in higher dislocation densities, thus improving the strength of the AA7075 sheets. Meanwhile, the cryorolled AA7075 after pre-aging can avoid the occurrence of shear bands and microcracks to improve the material's ductility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data sets generated and analyzed during the current study are available from the corresponding authors on reasonable request.

References

  1. Y. Aboura, A.J. Garner, R. Euesden, Z. Barrett, C. Engel, N.J.H. Holroyd, P.B. Prangnell, and T.L. Burnett, Corros. Sci. 199, 110161 (2022).

    Google Scholar 

  2. Y.F. Wang, J.R. Xing, Y.X. Zhou, C. Kong, and H.L. Yu, J. Alloys Compd. 942, 169044 (2023).

    Google Scholar 

  3. L. Bao, K. Li, J.Y. Zheng, Y.L. Zhang, K. Zhan, Z. Yang, B. Zhao, and V. Ji, Surf. Coat. Tech. 440, 128481 (2022).

    Google Scholar 

  4. Q. Sun, M. Yang, Y. Jiang, L. Lei, and Y. Zhang, J. Alloys Compd. 911, 165009 (2022).

    Google Scholar 

  5. Q.D. Zhang, F.Z. Sun, M. Liu, and W.C. Liu, J. Cent. South Univ. 29, 3544–3556 (2022).

    Google Scholar 

  6. J. Liu, Z.Y. Du, J.L. Su, J. Tang, F.L. Jiang, D.F. Fu, J. Teng, and H. Zhang, J. Mater. Sci. Technol. 132, 154–165 (2023).

    Google Scholar 

  7. Y.S. Lee, D.H. Koh, H.W. Kim, and Y. Ahn, S. Scr. Mater. 147, 45–49 (2017).

    Google Scholar 

  8. E.V. Arcieri, S. Baragetti, and Ž Božić, Eng. Failure Analy. 138, 106380 (2022).

    Google Scholar 

  9. Y.Z. Wu, K.G. Luo, Y. Zhang, C. Kong, and H.L. Yu, J. Alloys Compd. 921, 166166 (2022).

    Google Scholar 

  10. F.L. Yu, Y. Zhang, C. Kong, and H.L. Yu, Mater. Sci. Eng. A 834, 142600 (2022).

    Google Scholar 

  11. F. Spieckermann, D. Şopu, V. Soprunyuk, M.B. Kerber, J. Bednarčík, A. Schökel, A. Rezvan, S. Ketov, B. Sarac, E. Schafler, and J. Eckert, Nat. Commun. 13, 127–127 (2022).

    Google Scholar 

  12. S.S. Yang, Z.D. Li, Y.X. Zhou, Z. Tan, C. Kong, and H. Yu, J. Alloys Compd. 931, 167556 (2023).

    Google Scholar 

  13. L. Mei, X.P. Chen, P. Ren, Y.Y. Nie, G.J. Huang, and Q. Liu, Mater. Sci. Eng. A 771, 138608 (2020).

    Google Scholar 

  14. K.P. Sushanta, and R. Jayaganthan, Mater. Des. 32, 3150–3160 (2011).

    Google Scholar 

  15. D. Wang, S.Q. Huang, Y.P. Yi, H.L. He, and C. Li, Mater. Charact. 187, 111831 (2022).

    Google Scholar 

  16. G.A. He, K. Li, Y. Yang, Y. Liu, W.K. Wu, and C. Huang, Mater. Sci. Eng. A 822, 141682 (2021).

    Google Scholar 

  17. F. Ye, Y.X. Yu, B.S. Zhang, J. Rong, D.L. He, B.S. Han, X.G. Ma, Y.S. Zeng, Y.J. Xu, and S.J. Wu, J. Mater. Res. Technol. 22, 2983–2995 (2023).

    Google Scholar 

  18. L. Wang, C. Kong, and H.L. Yu, J. Alloy. Compd. 900, 163442 (2022).

    Google Scholar 

  19. H.Q. Xiong, Y.X. Zhou, P. Yang, C. Kong, and H.L. Yu, Mater. Sci. Eng. A 853, 143764 (2022).

    Google Scholar 

  20. Y.L. Jia, Y. Pang, J. Yi, Q. Lei, Z. Li, and Z. Xiao, J. Alloys Compd. 942, 169033 (2023).

    Google Scholar 

  21. P.Y. Ying, C.H. Lin, Z.Y. Liu, S. Bai, V. Levchenko, P. Zhang, J.B. Wu, T. Yang, M. Huang, G. Yang, M. Liu, and M.J. Li, Metals 12, 1208 (2022).

    Google Scholar 

  22. J. Luo, H.Y. Luo, S.J. Li, R.Z. Wang, and Y. Ma, Mater. Des. 187, 108402 (2020).

    Google Scholar 

  23. H. Lin, P.G. Yuan, N. Zhao, Z.L. Hu, and H.J. Ma, Trans. Nonferr. Met. Soc. China 32, 790–800 (2022).

    Google Scholar 

  24. M. Cui, Y.H. Jo, Y.W. Kim, H.Y. Kim, and J.H. Lee, J. Mater. Res. Technol. 20, 238–245 (2022).

    Google Scholar 

  25. K. Huang, S. Huang, Y. Yi, F. Dong, and H. He, J. Alloy. Compd. 902, 163821 (2022).

    Google Scholar 

  26. R.K. Singh, S.S.S. Guraja, O.O. Ajide, G.M. Owolabi, and N. Kumar, Mater. Sci. Eng. A 865, 144636 (2023).

    Google Scholar 

  27. W. Li, K. Xiong, L.J. Yang, S.M. Zhang, J.J. He, Y.W. Wang, and Y. Mao, Mater. Sci. Eng. A 856, 144046 (2022).

    Google Scholar 

  28. L.L. Song, H.T. Gao, L. Bhatt, C. Kong, and H.L. Yu, Mater. Sci. Eng. A 874, 145069 (2023).

    Google Scholar 

  29. Z.B. Xu, H.J. Roven, and Z.H. Jia, Mater. Sci. Eng. A 648, 350–358 (2015).

    Google Scholar 

  30. G. Ribárik, and T. Ungár, Mater. Sci. Eng. A 528, 112–121 (2010).

    Google Scholar 

  31. N. Sadasivan, M. Balasubramanian, and B.R. Rameshbapu, J Manuf Process 59, 698–726 (2020).

    Google Scholar 

  32. H. Gu, L. Bhatta, H.T. Gao, Z.D. Li, C. Kong, and H.L. Yu, Mater. Sci. Eng. A 843, 143141 (2022).

    Google Scholar 

  33. S.J. Yuan, W.J. Cheng, W. Liu, and Y.C. Xu, J. Mater. Process. Technol. 284, 116743 (2020).

    Google Scholar 

  34. H. Zhao, L.Y. Ye, Q.S. Cheng, Y. Kang, and W.J. Zhang, Mater. Charact. 197, 112715 (2023).

    Google Scholar 

  35. Y. Liu, X.S. Zhao, J. Li, L. Bhatta, K.G. Luo, C. Kong, and H.L. Yu, J. Alloy. Compd. 860, 158449 (2021).

    Google Scholar 

  36. B. Song, X.L. Yi, Z.Y. Liu, J. Wang, J.G. Zhao, and P.Y. Ying, J. Alloy. Compd. 764, 62–72 (2018).

    Google Scholar 

  37. L. Mei, M.J. Yang, X.P. Chen, Q.Q. Jin, Y.Q. Wang, and Y.M. Li, Mater. Sci. Eng. A 867, 144716 (2023).

    Google Scholar 

  38. L.J. Li, H.J. Kang, S.R. Zhang, R.G. Li, X. Yang, Z.N. Chen, E.Y. Guo, and T.M. Wang, J. Alloys Compd. 938, 168656 (2023).

    Google Scholar 

  39. Y. Xiong, K.H. Shu, Y. Li, Z.G. Chen, X.Q. Zha, T.T. He, S. Han, and C.X. Wang, Mater. Sci. Eng. A 856, 144005 (2022).

    Google Scholar 

  40. K.K. Ma, H.M. Wen, T. Hu, T.D. Topping, D. Isheim, D.N. Seidman, E.J. Lavernia, and J.M. Schoenung, Acta Mater. 62, 141–155 (2014).

    Google Scholar 

  41. J.W. Won, S. Lee, S.H. Park, M. Kang, K.R. Lim, C.H. Park, and Y.S. Na, J. Alloys Compd. 742, 290–295 (2018).

    Google Scholar 

  42. R. Gao, Y. Li, Z. Li, X. Li, K. Wen, Y. Zhang, and B. Xiong, J. Mater. Res. Technol. 18, 5394–5405 (2022).

    Google Scholar 

  43. P.C. Zhao, G.J. Yuan, R.Z. Wang, B. Guan, Y.F. Jia, X.C. Zhang, and S.T. Tu, J. Mater. Sci. Technol. 83, 196–207 (2021).

    Google Scholar 

  44. X.L. Wen, B. Chen, Z. Chen, X. Lin, H.O. Yang, N. Kang, Q.Z. Wang, W.L. Wang, and W.D. Huang, Mater. Sci. Eng. A 847, 143290 (2022).

    Google Scholar 

  45. I. Sabirov, M.Y. Murashkin, and R.Z. Valiev, Mater. Sci. Eng. A 560, 1–24 (2013).

    Google Scholar 

  46. Y. Li, G.F. Xu, X.Y. Peng, G.Y. Guo, S.C. Liu, and X.P. Liang, J. Alloy. Compd. 906, 163977 (2022).

    Google Scholar 

  47. S.L. Liu, K.G. Luo, H. Gu, H.T. Gao, C. Kong, and H.L. Yu, Scr. Mater. 222, 115004 (2023).

    Google Scholar 

  48. S.I. Baik, R.K. Gupta, K.S. Kumar, and D.N. Seidman, Acta Mater. 205, 116568 (2021).

    Google Scholar 

  49. S. Zhang, X. Luo, G.Y. Zheng, N.Z. Zhai, Y.Q. Yang, and P.T. Li, Mater. Sci. Eng. A 832, 142482 (2022).

    Google Scholar 

Download references

Acknowledgements

The authors appreciate the financial support from the National Natural Science Foundation of China (Grant No. 52105419), High-tech Industry Technology Innovation Leading Plan of Hunan Province (Grant No. 2022GK4032), Natural Science Foundation of Hunan Province, China (Grant No. 2022JJ40596), the Innovation Driven Program of Central South University (Grant No. 2019CX006), and the Research Fund of the Key Laboratory of the High-Performance Complex Manufacturing at Central South University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haitao Gao.

Ethics declarations

Conflict of interest

The authors confirm that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 123 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Gao, H., Xing, J. et al. Effect of Cryorolling After Pre-aging on Tensile Properties and Microstructures of AA7075 Plates. JOM 75, 4832–4844 (2023). https://doi.org/10.1007/s11837-023-06102-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-06102-z

Navigation