Skip to main content
Log in

Recovery of Re from Re-Rich Arsenic Sulfide Slag by Oxidative Leaching: Thermodynamic and Kinetic Mechanism Studies

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

This study explored a highly selective and efficient oxidation system for the recovery of rhenium resources from Re-rich arsenic sulfide slag containing significant quantities of arsenic. The effects of H2O2 dosage, initial H2SO4 concentration and leaching temperature on the Re, As and Bi extraction efficiency were investigated in detail. The results demonstrated that under the most favorable conditions of 20 mL H2O2, 70°C, 0.25 mol L−1 H2SO4 solution, the Re extraction efficiency can reach 99.2%. The phase transitions of the main constituents of the slag, Re, As and Bi were analyzed. ReS2 and Re2S7 in the Re-rich arsenic sulfide slag were transformed to ReO4, impelling Re to enter the leachate. Bi and As were oxidized and entered the leachate in ionic form under a limited H2O2 dosage. As the H2O2 dosage increased, the concentration of Bi and As in the leachate reached a threshold value and transformed to stable BiAsO4, resulting in the attenuation of As and Bi extraction efficiency. This process considerably promoted the selective leaching of Re and the separation of Re from As and Bi. Kinetic analysis shows that the leaching process is controlled by chemical reaction with an apparent activation energy of 29.05 kJ mol−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. H. Hori, Y. Yoshimura, T. Otsu, K. Kume, Y. Mitsumori, S. Kutsuna, and K. Koike, Sep. Purif. Technol. 156, 242 (2015).

    Article  Google Scholar 

  2. R.P. Singh Gaur, T.A. Wolfe, and S.A. Braymiller, Int. J. Refract. Met. Hard Mater. 50, 79 (2015).

    Article  Google Scholar 

  3. C.D. Anderson, P.R. Taylor, and C.G. Anderson, Mining Metall. Explor. 30, 59 (2013).

    Google Scholar 

  4. M. Free, JOM 63, 89 (2011).

    Article  Google Scholar 

  5. T.A. Millensifer, D. Sinclair, I. Jonasson, and A. Lipmann, Crit. Met. Handb (Wiley, Oxford, 2013), pp340–360.

    Google Scholar 

  6. T. Hong, T. Zheng, M. Liu, K.A. Mumford, and G.W. Stevens, Hydrometallurgy 195, 105402 (2020).

    Article  Google Scholar 

  7. B. Zhang, H. Liu, W. Wang, Z. Gao, and Y. Cao, Hydrometallurgy 173, 50 (2017).

    Article  Google Scholar 

  8. S.H. Joo, Y.U. Kim, J.G. Kang, J.R. Kumar, H.S. Yoon, P.K. Parhi, and S.M. Shin, Mater. Trans. 53, 2034 (2012).

    Article  Google Scholar 

  9. A.N. Zagorodnyaya, Z.S. Abisheva, S.E. Sadykanova, V.V. Bobrova, and A.S. Sharipova, Hydrometallurgy 104, 308 (2010).

    Article  Google Scholar 

  10. C. Zhan, Z. Hong, and Q. Zhao, Hydrometallurgy 97, 153 (2009).

    Article  Google Scholar 

  11. H.T. Truong, T.H. Nguyen, and M.S. Lee, Hydrometallurgy 171, 298 (2017).

    Article  Google Scholar 

  12. A.N. Zagorodnyaya and Z.S. Abisheva, Hydrometallurgy 65, 69 (2002).

    Article  Google Scholar 

  13. S. Virolainen, M. Laatikainen, and T. Sainio, Hydrometallurgy 158, 74 (2015).

    Article  Google Scholar 

  14. H.A. Cheema, S. Ilyas, S. Masud, M.A. Muhsan, I. Mahmood, and J. Lee, Sep. Purif. Technol. 191, 116 (2018).

    Article  Google Scholar 

  15. X. Cai, L. Kong, X. Hu, and X. Peng, J. Hazard. Mater. 416, 126233 (2021).

    Article  Google Scholar 

  16. L. Li, K. Jiang, D. Liu, and H. Wang, Min. Metall. 7, 46 (1998).

    Google Scholar 

  17. L. Guo, Z. Hu, Y. Du, T.C. Zhang, and D. Du, J. Hazard. Mater. 414, 125436 (2021).

    Article  Google Scholar 

  18. A.M. Amer, Jom 60, 55 (2008).

    Article  Google Scholar 

  19. C. Shao, Z. Teng, X. Lu, Y. Wang, J. Yu, and C. Wang, China Nonferrous Metall. 50, 91 (2021).

    Google Scholar 

  20. J. Li, SHANXI Metall. 167, 3 (2017).

    Google Scholar 

  21. S. Xu, Y. Shen, T. Yu, H. Zhang, H. Cao, and G. Zheng, Jom 73, 913 (2021).

    Article  Google Scholar 

  22. T. Pecina, T. Franco, P. Castillo, and E. Orrantia, Miner. Eng. 21, 23 (2008).

    Article  Google Scholar 

  23. B. Hu, T. Yang, W. Liu, D. Zhang, and L. Chen, Trans. Nonferrous Met. Soc. China 29, 2411 (2019).

    Article  Google Scholar 

  24. X. Min, Q. Xu, Y. Ke, H. Xu, L. Yao, J. Wang, H. Ren, T. Li, and Z. Lin, Hydrometallurgy 200, 105549 (2021).

    Article  Google Scholar 

  25. L. Kong, X. Peng, and X. Hu, Environ. Sci. Technol. 51, 12583 (2017).

    Article  Google Scholar 

  26. H. Xu, X. Min, Y. Wang, Y. Ke, L. Yao, D. Liu, and L. Chai, Hydrometallurgy 191, 105229 (2020).

    Article  Google Scholar 

  27. S. Xu, S. Dai, Y. Shen, T. Yu, H. Zhang, H. Cao, and G. Zheng, J. Hazard. Mater. 423, 127035 (2022).

    Article  Google Scholar 

  28. P.K. Panigrahi, and A. Pathak, J. Nanoparticles 2013, 1 (2013).

    Google Scholar 

  29. D. Laurenti, K.T.N. Thi, N. Escalona, L. Massin, M. Vrinat, and F.J.G. Llambías, Catal. Today 130, 50 (2008).

    Article  Google Scholar 

  30. S. Oktay, Z. Kahraman, M. Urgen, and K. Kazmanli, Appl. Surf. Sci. 328, 255 (2015).

    Article  Google Scholar 

  31. H.A. Bullen, M.J. Dorko, J.K. Oman, and S.J. Garrett, Surf. Sci. 531, 319 (2003).

    Article  Google Scholar 

  32. H. Xu, L. Yao, Q. Xu, Y. Wang, X. Min, Y. Ke, Y. Luo, J. Tang, S. Peng, L. Zhang, and J. Du, Trans. Nonferrous Met. Soc. China (English Ed. 32, 1041) (2022).

  33. H. Chen, Z. Zhang, Z. Yang, Q. Yang, B. Li, and Z. Bai, Chem. Eng. J. 273, 481 (2015).

    Article  Google Scholar 

  34. D.S. Han, B. Batchelor, and A. Abdel-Wahab, J. Colloid Interface Sci. 368, 496 (2012).

    Article  Google Scholar 

  35. W. Zeng, H. Hu, R. Xiao, J. Yang, S. Liu, L. Wu, C. Xiong, W. Guo, and Y. Yan, Hydrometallurgy 199, 105546 (2021).

    Article  Google Scholar 

  36. S. Guo, J. He, L. Zhu, H. Chen, K. Zhou, J. Xu, and Z. Chen, J. Clean. Prod. 357, 131732 (2022).

    Article  Google Scholar 

  37. Y. Zhang, C. Li, Z. Zhang, W. Ji, X. Lin, and J. Huang, Chin. J. Nonferrous Met. 32, 856 (2022).

    Google Scholar 

  38. M. Wei, Q. Yu, W. Duan, F. Yang, T. Wu, Z. Zuo, Q. Qin, and J. Dai, Thermochim. Acta 655, 52 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51874257).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenyu Feng or Guoqu Zheng.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Feng, W., Cao, H. et al. Recovery of Re from Re-Rich Arsenic Sulfide Slag by Oxidative Leaching: Thermodynamic and Kinetic Mechanism Studies. JOM 75, 4910–4921 (2023). https://doi.org/10.1007/s11837-023-06101-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-06101-0

Navigation