Skip to main content
Log in

Machine Learning Models for Predicting and Controlling the Pressure Difference of Blast Furnace

  • Applications of Machine Learning in Materials Development and Additive Manufacturing
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The pressure difference is an important parameter to characterize the stability and smoothness of the blast furnace (BF) ironmaking process. The prediction and control of the pressure difference is the basic step to ensure the high efficiency, stability, low consumption, and smooth operation of a BF. Based on the collected industrial data, eight machine learning methods were used to build a prediction model for the pressure difference after 1 h (PD-1 h) in this article. In addition, a partial dependence plot (PDP) and Shapley additive explanations were used to visualize and quantitatively analyze the impact of features on PD-1 h. The simulation results show that the prediction accuracy of the support vector regression model and the CatBoost model for PD-1 h reaches 94.45% and 94.34%, respectively. PD, BP, and VBG are the major factors that affect PD-1 h. In addition, the method of controlling PD-1 h by adjusting operating parameters through 2D-PDP is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Z. Liu, Z. Deng, G. He, H. Wang, X. Zhang, J. Lin, Y. Qi, and X. Liang, Nat. Rev. Earth Environ. 3, 141 (2022).

    Article  Google Scholar 

  2. C. Yilmaz, J. Wendelstorf, and T. Turek, J. Clean. Prod. 154, 488 https://doi.org/10.1016/j.jclepro.2017.03.162 (2017).

    Article  Google Scholar 

  3. J. Ishii, R. Murai, I. Sumi, Y. Yongxiang, and R. Boom, ISIJ Int. 57, 1531 (2017).

    Article  Google Scholar 

  4. N. Hur, B. Cho, J. Choi, K. Hanand, and K. Seo, Rev. Métall. 93, 367 (1996).

    Article  Google Scholar 

  5. W. Chen, X. Yin, and D. Ma, Appl. Energy 136, 1174 (2014).

    Article  Google Scholar 

  6. M. Geerdes, R. Chaigneau, and O. Lingiardi, Modern Blast Furnace Ironmaking: An Introduction (2020), (Ios Press, 2020).

  7. S. Lou, C. Yang, P. Wu, L. Kong, and Y. Xu, IEEE Trans. Instrum. Meas. https://doi.org/10.1109/TIM.2022.3200113 (2022).

    Article  Google Scholar 

  8. L. Liu, A. Wang, M. Sha, X. Sun, and Y. Li, ISIJ Int. 51, 1474 https://doi.org/10.2355/isijinternational.51.1474 (2011).

    Article  Google Scholar 

  9. H. Tian, and A. Wang, ISIJ Int. 50, 738 https://doi.org/10.2355/isijinternational.50.738 (2010).

    Article  Google Scholar 

  10. X. Su, S. Zhang, Y. Yin, and W. Xiao, Int. J. Mach. Learn. Cybern. 10, 2739 https://doi.org/10.1007/s13042-018-0897-3 (2019).

    Article  Google Scholar 

  11. X. Zhang, M. Kano, and S. Matsuzaki, Comput. Chem. Eng. 130, 106575 (2019).

    Article  Google Scholar 

  12. H. Zhang, Y. Yin, and S. Zhang, Neurocomputing 174, 232 https://doi.org/10.1016/j.neucom.2015.04.106 (2016).

    Article  Google Scholar 

  13. X. Zhang, M. Kano, and S. Matsuzaki, Comput. Chem. Eng. 121, 442 https://doi.org/10.1016/j.compchemeng.2018.10.022 (2019).

    Article  Google Scholar 

  14. D. Pan, Z. Jiang, Z. Chen, W. Gui, Y. Xie, and C. Yang, IEEE Trans. Instrum. Meas. 68, 3576 https://doi.org/10.1109/TIM.2018.2880061 (2019).

    Article  Google Scholar 

  15. Y. Yue, A. Dong, H. Zhao, and H. Wang, in 2016 IEEE International Conference on Mechatronics and Automation (2016), pp 1396–1400.

  16. H. Zhang, S. Zhang, Y. Yin, and X. Chen, Int. J. Mach. Learn. Cybern. 9, 1697 https://doi.org/10.1007/s13042-017-0674-8 (2018).

    Article  Google Scholar 

  17. Y. Li, J. Zhang, S. Zhang, and W. Xiao, ISA Trans. https://doi.org/10.1016/j.isatra.2021.09.018 (2021).

    Article  Google Scholar 

  18. W. Chen, F. Kong, B. Wang, and Y. Li, Ironmak. Steelmak. 46, 974 https://doi.org/10.1080/03019233.2018.1470146 (2019).

    Article  Google Scholar 

  19. L. Jian, Y. Song, S. Shen, Y. Wang, and H. Yin, ISIJ Int. 55, 845 https://doi.org/10.2355/isijinternational.55.845 (2015).

    Article  Google Scholar 

  20. X. Wang, T. Hu, and L. Tang, IEEE Trans. Neural Netw. Learn. Syst. 33, 2080 https://doi.org/10.1109/TNNLS.2021.3059784 (2022).

    Article  Google Scholar 

  21. S. Luo, Z. Dai, T. Chen, H. Chen, and L. Jian, Appl. Intell. 50, 1997 https://doi.org/10.1007/s10489-020-01662-y (2020).

    Article  Google Scholar 

  22. D.O.L. Fontes, L.G.S. Vasconcelos, and R.P. Brito, Comput. Chem. Eng. 141, 107028 https://doi.org/10.1016/j.compchemeng.2020.107028 (2020).

    Article  Google Scholar 

  23. J. Li, C. Hua, Y. Yang, and X. Guan, IEEE Trans. Ind. Electron. 65, 4933–4942 https://doi.org/10.1109/TIE.2017.2772141 (2018).

    Article  Google Scholar 

  24. D. Jiang, X. Zhou, Z. Wang, K. Li, and J. Zhang, Metall. Res. Technol. 119, 515 (2022).

    Article  Google Scholar 

  25. D. Jiang, Z. Wang, J. Zhang, D. Jiang, K. Li, and F. Liu, JOM 74, 1633 (2022).

    Article  Google Scholar 

  26. D. Jiang, Z. Wang, K. Li, J. Zhang, L. Ju, and L. Hao, Metals-Basel 12, 535 (2022).

    Article  Google Scholar 

  27. Y. Li, S. Zhang, Y. Yin, J. Zhang, and W. Xiao, Neural Process. Lett. 50, 1191 https://doi.org/10.1007/s11063-018-9888-3 (2019).

    Article  Google Scholar 

  28. D. Jiang, J. Zhang, Z. Wang, C. Feng, K. Jiao, and R. Xu, JOM 72, 3908 https://doi.org/10.1007/s11837-020-04360-9 (2020).

    Article  Google Scholar 

  29. X. Su, S. Zhang, Y. Yin, Y. Liu, and W. Xiao, Soft Comput 22, 3575 https://doi.org/10.1007/s00500-018-3153-6 (2018).

    Article  Google Scholar 

  30. X.-L. Li, D.-X. Liu, C. Jia, and X.-Z. Chen, Neurocomputing 148, 209 https://doi.org/10.1016/j.neucom.2013.09.067 (2015).

    Article  Google Scholar 

  31. X. Su, S. Zhang, Y. Yin, and W. Xiao, J. Frankl. Inst. 355, 1663 (2018).

    Article  Google Scholar 

  32. C. Gao, L. Jian, and S. Luo, IEEE Trans. Ind. Electron. 59, 1134–1145 https://doi.org/10.1109/TIE.2011.2159693 (2012).

    Article  Google Scholar 

  33. Y. Liu, H. Zhang, and Y. Shen, Chem. Eng. Sci. 260, 117945 https://doi.org/10.1016/j.ces.2022.117945 (2022).

    Article  Google Scholar 

  34. Y. Tunckaya, Proc. Inst. Mech. Eng. Part E: J. Process Mech. Eng. 231, 1101 (2017).

    Article  Google Scholar 

  35. H. Drucker, C.J. Burges, L. Kaufman, A. Smola, and V. Vapnik, Advances in Neural Information Processing Systems, 9 (1996).

  36. L. Jian, C. Gao, L. Li, and J. Zeng, ISIJ Int. 48, 1659–1661 https://doi.org/10.2355/isijinternational.48.1659 (2008).

    Article  Google Scholar 

  37. A.J. Myles, R.N. Feudale, Y. Liu, N.A. Woody, and S.D. Brown, J. Chemometr.: J. Chemometr. Soc. 18, 275–285 (2004).

    Article  Google Scholar 

  38. J.T. Hancock, and T.M. Khoshgoftaar, J. Big Data 7, 1–45 (2020).

    Article  Google Scholar 

  39. E. Al Daoud, Int. J. Comput. Inf. Eng. 13, 6–10 (2019).

    Google Scholar 

  40. J.A. Anderson, An Introduction to Neural Networks (MIT Press, Cambridge, 1995).

    Book  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China [Project No.: 51904026] and the China Postdoctoral Science Foundation [Project No.: BX20200045].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenyang Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 148 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, D., Wang, Z., Li, K. et al. Machine Learning Models for Predicting and Controlling the Pressure Difference of Blast Furnace. JOM 75, 4550–4561 (2023). https://doi.org/10.1007/s11837-023-06094-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-06094-w

Navigation