Skip to main content

Advertisement

Log in

Mechanical and Degradation Studies on the Biodegradable Composites of a Polylactic Acid Matrix Reinforced by Tricalcium Phosphate and ZnO Nanoparticles for Biomedical Applications

  • Composite Materials for Sustainable and Eco-Friendly Material Development and Application
  • Published:
JOM Aims and scope Submit manuscript

Abstract

This research focuses on the preparation of biodegradable composites of a polylactic acid (PLA) matrix reinforced with tricalcium phosphate (TCP) and zinc oxide (ZnO) nanoparticles for biomedical applications. Different concentrations of TCP and ZnO were used to prepare PLA/TCP, PLA/ZnO, and PLA/TCP/ZnO composites, and Fourier-transform infrared (FTIR) spectra were measured to investigate their chemical compositions. The mechanical properties of the composites were tested, and their degradation behavior was examined in a phosphate-buffered saline (PBS) solution by monitoring the change in weight loss. The results showed that the addition of TCP improved the strength of the composite material, while ZnO improved its strength and ductility. The cumulative effect of TCP and ZnO nanoparticles in PLA can lead to a composite material with improved mechanical properties compared to pure PLA. The addition of TCP accelerates the decrease of the degradation rate of PLA and increases its mechanical strength, while the incorporation of ZnO can potentially accelerate degradation but also reinforce the mechanical properties. The novel PLA/30TCP/2ZnO composite showed optimum properties with a 51.47% increase in tensile strength, 42.62% increase in elongation at break, and 275.35% increase in degradation rate in terms of weight loss compared to pure PLA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M. Rezai Rad, F. Fahimipour, E. Dashtimoghadam, H. Nokhbatolfoghahaei, L. Tayebi, and A. Khojasteh, Bioprinting 21, e00117 (2021).

    Article  Google Scholar 

  2. Y. Lai, Y. Li, H. Cao, J. Long, X. Wang, L. Li, C. Li, Q. Jia, B. Teng, T. Tang, J. Peng, D. Eglin, M. Alini, D.W. Grijpma, G. Richards, and L. Qin, Biomaterials 197, 207 (2019).

    Article  Google Scholar 

  3. J.W. Park, J.U. Hwang, J.H. Back, S.W. Jang, H.J. Kim, P.S. Kim, S. Shin, and T. Kim, Compos. Part B Eng. 178, 107449 (2019).

    Article  Google Scholar 

  4. C. Li, C. Guo, V. Fitzpatrick, A. Ibrahim, M.J. Zwierstra, P. Hanna, A. Lechtig, A. Nazarian, S.J. Lin, and D.L. Kaplan, Nat. Rev. Mater. 5, 61 (2020).

    Article  Google Scholar 

  5. J. Ivorra-Martinez, L. Quiles-Carrillo, T. Boronat, S. Torres-Giner, and J.A. Covas, Polymers 12, 1389 (2020).

    Article  Google Scholar 

  6. J. Vonhoegen, D. John, and C. Hägermann, J. Orthop. Surg. Res. 14, 1 (2019).

    Article  Google Scholar 

  7. S. Shankar, L.F. Wang, and J.W. Rhim, Mater. Sci. Eng. C. Mater. Biol. Appl. 93, 289 (2018).

    Article  Google Scholar 

  8. U. Boro, N. Kashyap, and V.S. Moholkar, ACS Eng. Au 2, 46 (2021).

    Article  Google Scholar 

  9. R.C. Nonato, L.H.I. Mei, B.C. Bonse, C.V. Leal, C.E. Levy, F.A. Oliveira, C. Delarmelina, M.C.T. Duarte, and A.R. Morales, Polym. Eng. Sci. 62, 1147 (2022).

    Article  Google Scholar 

  10. M. Heydari-Majd, B. Ghanbarzadeh, M. Shahidi-Noghabi, A. Abdolshahi, S. Dahmardeh, and M. Malek Mohammadi, Polym. Bull. 79, 97 (2022).

    Article  Google Scholar 

  11. A. Akshaykranth, N. Jayarambabu, T. Venkatappa Rao, R. Rakesh Kumar, and L. Srinivasa Rao, Polym. Bull. 80, 1369 (2022).

    Article  Google Scholar 

  12. Z. Tang, F. Fan, Z. Chu, C. Fan, and Y. Qin, Molecules 25, 1310 (2020).

    Article  Google Scholar 

  13. H. Rashidi, B. Najaf Oshani, I. Hejazi, and J. Seyfi, Polym. Technol. Mater. 59, 72 (2020).

    Google Scholar 

  14. P. Arriagada, H. Palza, P. Palma, M. Flores, and P. Caviedes, J. Biomed. Mater. Res. Part A 106, 1051 (2018).

    Article  Google Scholar 

  15. X.J. Shen, S. Yang, J.X. Shen, J.L. Ma, Y.Q. Wu, X.L. Zeng, and S.Y. Fu, Ind. Crops Prod. 130, 571 (2019).

    Article  Google Scholar 

  16. F. Ciftci, S. Ayan, N. Duygulu, Y. Yilmazer, Z. Karavelioglu, M. Vehapi, R. Cakır Koc, M. Sengor, H. Yılmazer, D. Ozcimen, O. Gunduz, and C.B. Ustundag, Int. J. Polym. Mater. Polym. Biomater. 71, 898 https://doi.org/10.1080/00914037.2021.1925276 (2021).

    Article  Google Scholar 

  17. A. Peter, L. Mihaly Cozmuta, C. Nicula, A. Mihaly Cozmuta, C.M. Talasman, G. Drazic, A. Peñas, A.J. Calahorro, G. Sagratini, and S. Silvi, Food Chem. 363, 130341 (2021).

    Article  Google Scholar 

  18. Y. Kang, C. Wang, Y. Qiao, J. Gu, H. Zhang, T. Peijs, J. Kong, G. Zhang, and X. Shi, Biomacromol 20, 1765 (2019).

    Article  Google Scholar 

  19. S.V. Harb, E.H. Backes, C.A.G. Beatrice, L.C. Costa, L.A. Pessan, A.C.C. Nunes, and H.S.S. de Araújo, PLA-TCP-ZnO scaffolds for bone tissue engineering via 3D printing, in Proceedings of the 2021: Brazil MRS Meeting, International Union of Materials Research Societies, International Conference on Electronic Materials (IUMRS-ICEM), 2021. https://inis.iaea.org/search/search.aspx?orig_q=RN:52111516

  20. K. Lim, W.S. Chow, and S.Y. Pung, J. Polym. Environ. 27, 1746 (2019).

    Article  Google Scholar 

  21. A. Anžlovar, A. Kržan, and E. Žagar, Arab. J. Chem. 11, 343 (2018).

    Article  Google Scholar 

  22. E. Odabaş and E. Akarsu, Compos. Interfaces. https://doi.org/10.1080/09276440.2023.2210884 (2023).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naseem Abbas.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Muzamil Hussain and Naseem Abbas have contributed equally to this work.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussain, M., Khan, S.M., Shafiq, M. et al. Mechanical and Degradation Studies on the Biodegradable Composites of a Polylactic Acid Matrix Reinforced by Tricalcium Phosphate and ZnO Nanoparticles for Biomedical Applications. JOM 75, 5379–5387 (2023). https://doi.org/10.1007/s11837-023-06086-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-06086-w

Navigation