Skip to main content
Log in

Synthesis and Characterization of Phyllanthus acidus-Assisted Iron-Oxide Nanoparticles for the Removal of Heavy Metals from Wastewater

  • Composite Materials for Sustainable and Eco-Friendly Material Development and Application
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The current research presents the synthesis and characterization of iron oxide nanoparticles using aqueous extract of Phyllanthus acidus leaf and investigates its efficiency in the removal of heavy metals from wastewater. The synthesized iron oxide nanoparticles were characterized using x-ray diffraction analysis, Fourier-transform infrared spectroscopy, scanning transmission electron microscopy with energy-dispersive energy, thermal gravimetric analysis, and zeta potential analysis. SEM micrographs showed rod morphology, where a magnetite Fe3O4 phase was formed. The average size of the nanoparticles was 19 nm. The occurrence of phyto-compounds in extracts was capped, and the surface of iron oxide nanoparticles was determined by FT-IR analysis. Zeta potential and TGA analysis proved that highly stable nanoparticles were formed by biological methods. Phyllanthus acidus extract acted as a reducing and stabilizing agent for the synthesis of iron oxide nanoparticles. The synthesized nanoparticles were used for the removal of heavy metals from wastewater. The most effective removal effects were observed for cadmium, copper, and lead, with a removal efficiency of 57.69%, 56.08%, and 87.93% respectively, which was measured by inductively coupled plasma-optical emission spectroscopy. The present study concludes that P. acidus-mediated iron oxide nanoparticles may be employed for the removal of heavy metals from wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. P. Rajiv, B. Bavadharani, M.N. Kumar, and P. Vanathi, Biocatal. Agric Biotechnol. 12, 45 (2017).

    Article  Google Scholar 

  2. M. Herlekar, S. Barve, and R. Kumar, J. Nanomater. https://doi.org/10.1155/2014/140614 (2014).

    Article  Google Scholar 

  3. K.S. Siddiqi, A. ur Rahman, and A. Husen, Nanoscale Res. Lett. 11, 13 (2016).

    Article  Google Scholar 

  4. M. Rai, and A. Ingle, Appl. Microbiol. Biotechnol. 94, 287 (2012).

    Article  Google Scholar 

  5. M. Senthil, and C. Ramesh, Dig. J. Nanomater. Biostruct. 7(4), 1 (2012).

    Google Scholar 

  6. V. Romanovski, E. Romanovskaia, D. Moskovskikh, K. Kuskov, V. Likhavitski, M.F. Arslan, S. Beloshapkin, I. Matsukevich, and A. Khort, J. Environ. Chem. Eng. 9(4), 105712 (2021).

    Article  Google Scholar 

  7. G. Jagathesan, and P. Rajiv, Biocatal. Agric. Biotechnol. 13, 90 (2018).

    Article  Google Scholar 

  8. D. Propolsky, E. Romanovskaia, W. Kwapinski, and V. Romanovski, Environ. Res. 182, 108996 (2020).

    Article  Google Scholar 

  9. V. Romanovski, Environ. Sci. Pollut. Res. 27(25), 31706 (2020).

    Article  Google Scholar 

  10. M.S.H. Bhuiyan, M.Y. Miah, S.C. Paul, T.D. Aka, O. Saha, M.M. Rahaman, M.J.I. Sharif, O. Habiba, and M. Ashaduzzaman, Heliyon 6(8), 04603 (2020).

    Article  Google Scholar 

  11. H. Wang, Y. Wang, Z. Liu, S. Luo, V. Romanovski, X. Huang, B. Czech, H. Sun, and T. Li, J. Environ. Chem. Eng. 10(6), 109004 (2022).

    Article  Google Scholar 

  12. I. Matsukevich, Y. Lipai, and V. Romanovski, J. Mater. Sci. 56, 5031 (2021).

    Article  Google Scholar 

  13. E.M. Bakhsh, S.B. Khan, K. Akhtar, E.Y. Danish, T.M. Fagieh, C. Qiu, Y. Sun, V. Romanovski, and X. Su, Colloids Surf. A 647, 129060 (2022).

    Article  Google Scholar 

  14. C. Sowmya, V. Lavakumar, N. Venkateshan, V. Ravichandiran, and D.V.R. Saigopal, Chem. Cent. J. 12(1), 1 (2018).

    Article  Google Scholar 

  15. S. Prabhu, and E.K. Poulose, Int. Nano Lett. 2(1), 32 (2012).

    Article  Google Scholar 

  16. R. Brooks, A. Goldson-Barnaby, and D. Bailey, Int. J. Fruit Sci. 20(sup3), S1706 (2020).

    Article  Google Scholar 

  17. R. Manikandan, M. Beulaja, R. Thiagarajan, S. Palanisamy, G. Goutham, A. Koodalingam, N.M. Prabhu, E. Kannapiran, M.J. Basu, C. Arulvasu, and M. Arumugam, Process Biochem. 55, 172 (2017).

    Article  Google Scholar 

  18. M. Ousa, J. Ousingsawat, R. Seitz, S. Puntheeranurak, A. Regalado, A. Schmidt, T. Grego, C. Jansakul, M.D. Amaral, R. Schreiber, and K. Kunzelmann, Mol. Pharmacol. 71, 366 (2007).

    Article  Google Scholar 

  19. R.C. Jagessar, A. Mars, and G. Gomes, Nat. Sci. 6(2), 24 (2008).

    Google Scholar 

  20. A. Chinnathambi, S.A. Alharbi, D. Joshi, and H. Lenin, Bioinorg. Chem. Appl. https://doi.org/10.1155/2022/9493816 (2022).

    Article  Google Scholar 

  21. M. Debashri, and M. Tamal, Res. J. Recent Sci. 2277, 2502 (2012).

    Google Scholar 

  22. T.T.K. Nguyen, C. Laosinwattana, M. Teerarak, and K. Pilasombut, Asian Australas J. Anim. Sci. 30(9), 1323 (2017).

    Article  Google Scholar 

  23. A.A. Dehpour, M.A. Ebrahimzadeh, N.S. Fazel, and N.S. Mohammad, Grasas Aceites 60(4), 405 (2009).

    Article  Google Scholar 

  24. C.T. Yavuz, J.T. Mayo, W.W. Yu, A. Prakash, J.C. Falkner, S. Yean, L. Cong, H.J. Shipley, A. Kan, M. Tomson, and D. Natelson, Science 314(5801), 964 (2006).

    Article  Google Scholar 

  25. Z. Cheng, A.L.K. Tan, Y. Tao, D. Shan, K.E. Ting, and X.J. Yin, Int. J. Photoenergy. https://doi.org/10.1155/2012/608298 (2012).

    Article  Google Scholar 

  26. Y. Venkatraman, and A.K. Priya, Int. J. Environ. Sci. Technol. 19(4), 2721 (2022).

    Article  Google Scholar 

  27. R. Periakaruppan, X. Chen, K. Thangaraj, A. Jeyaraj, H.H. Nguyen, Y. Yu, S. Hu, L. Lu, and X. Li, J. Clean. Prod. 278, 123962 (2021).

    Article  Google Scholar 

  28. V.K. Yadav, D. Ali, S.H. Khan, G. Gnanamoorthy, N. Choudhary, K.K. Yadav, V.N. Thai, S.A. Hussain, and S. Manhrdas, Nanomaterials 10(8), 1551 (2020).

    Article  Google Scholar 

  29. V.A. Niraimathee, V. Subha, R.E. Ravindran, and S. Renganathan, Int. J. Environ. Sustain. Dev. 15(3), 227 (2016).

    Article  Google Scholar 

  30. A.V. Samrot, P. Senthilkumar, S. Rashmitha, P. Veera, and C.S. Sahithya, J. Nanostruct. Chem. 8(3), 343 (2018).

    Article  Google Scholar 

  31. N.D.S. Zambri, N.I. Taib, F.A. Latif, and Z. Mohamed, Molecules 24(20), 3803 (2019).

    Article  Google Scholar 

  32. H.E.A. Mohamed, S. Afridi, A.T. Khalil, M. Ali, T. Zohra, M. Salman, A. Ikram, Z.K. Shinwari, and M. Maaza, Mater. Sci. Eng. C 112, 110890 (2020).

    Article  Google Scholar 

  33. S. Patila, A. Sandberg, E. Heckert, W. Self, and S. Sea, Biomaterials 28, 4607 (2007).

    Google Scholar 

  34. S. Puttipipatkhachorn, J. Nunthanid, K. Yamamotoc, and G.E. Peck, J. Control. Release 75, 143 (2001).

    Article  Google Scholar 

  35. K. Singh, D.S. Chopra, D. Singh, and N. Singh, Arab. J. Chem. 13(12), 9034 (2020).

    Article  Google Scholar 

  36. E.A. Moacă, C.G. Watz, C. Păcurariu, L.B. Tudoran, R. Ianos, V. Socoliuc, G.A. Drăghici, A. Iftode, S. Liga, D. Dragos, and C.A. Dehelean, Nanomaterials 12(12), 2012 (2022).

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported (TNSCST/SPS/2021-2022-ES-042) by the Tamil Nadu State Council for Science and Technology, Tamil Nadu, India. We thank the Tamil Nadu State Council for Science and Technology for the financial support.

Funding

This work was financially supported (TNSCST/SPS/2021-2022-ES-042) by the Tamil Nadu State Council for Science and Technology, Tamil Nadu, India.

Author information

Authors and Affiliations

Authors

Contributions

Dr. RP: supervision, funding acquisition and project administration. Dr. PV: data curation and writing. Dr. SAA: data curation and writing. Ms. MJ: investigation, data curation and writing—original draft preparation. Dr. NA-D: data curation and writing. Dr. SD: data curation and writing. Dr. SHAA: data curation and writings.

Corresponding author

Correspondence to Rajiv Periakaruppan.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Periakaruppan, R., Abed, S.A., Vanathi, P. et al. Synthesis and Characterization of Phyllanthus acidus-Assisted Iron-Oxide Nanoparticles for the Removal of Heavy Metals from Wastewater. JOM 75, 5372–5378 (2023). https://doi.org/10.1007/s11837-023-06081-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-06081-1

Navigation