Skip to main content
Log in

Selective Adsorption Mechanism of Ferric Ions on the Surfaces of Chalcopyrite and Pyrite in Flotation

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

When copper ores containing pyrite are crushed and ground, many unavoidable Fe3+ ions will be produced and enter the flotation process. At present, the adsorption mechanism of Fe3+ on chalcopyrite and pyrite surfaces is not clear. Here, the adsorption behaviors of Fe3+ on the surfaces of chalcopyrite and pyrite were systematically investigated by micro-flotation tests, infrared spectra studies, X-ray photoelectron spectroscopy analysis (XPS), first-principles density functional theory calculations and theoretical analysis of the coordination field. The micro-flotation tests showed that the recovery rate of pyrite reduced with the growth of pH, but the recovery rate of chalcopyrite was basically unchanged. The infrared spectra analysis revealed that the intensities of the characteristic xanthate peaks of the C=S and C-O-C groups in the Fe3+-treated pyrite surface changed more noticeably than those of the xanthate peaks of the Fe3+-treated chalcopyrite. XPS showed that Fe (OH)3 was more easily and spontaneously adsorbed on pyrite than chalcopyrite surfaces. First-principles DFT calculations and electronic structure analysis further showed that pyrite had a stronger adsorption of Fe (OH)3 than chalcopyrite. This work sheds new light on the adsorption mechanism of Fe3+ on the surfaces of chalcopyrite and pyrite during flotation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Y. Li, W. Li, Z. Wei, Q. Xiao, C. Lartey, Y. Li, and S. Song, Miner. Process. Extr. Metall. Rev. 40, 129 (2019).

    Article  Google Scholar 

  2. M. Derqaoui, I. Aarab, A. Abidi, A. Yaacoubi, K. El Amari, A. Etahiri, and A. Baçaoui, Miner. Process. Extr. Metall. Rev. https://doi.org/10.1080/08827508.2022.2132944 (2022).

    Article  Google Scholar 

  3. Z. Gao, Z. Jiang, W. Sun, and Y. Gao, Trans. Nonferrous Met. Soc. China 31, 2081 https://doi.org/10.1016/s1003-6326(21)65640-6 (2021).

    Article  Google Scholar 

  4. L. Yu, Q. Liu, S. Li, J. Deng, B. Luo, and H. Lai, Sep. Purif. Technol. 222, 109 https://doi.org/10.1016/j.seppur.2019.04.007 (2019).

    Article  Google Scholar 

  5. H. Peng, W. Luo, D. Wu, X. Bie, H. Shao, W. Jiao, and Y. Liu, Minerals 7, 108 https://doi.org/10.3390/min7070108 (2017).

    Article  Google Scholar 

  6. B. Yang, D. Wang, T. Wang, H. Zhang, F. Jia, and S. Song, Miner. Eng. 130, 101 (2019).

    Article  Google Scholar 

  7. J. Dong, Q. Liu, L. Yu, and S. Subhonqulov, Sep. Purif. Technol. 256, 117778 (2021).

    Article  Google Scholar 

  8. P. Li, G. Zhang, W. Zhao, G. Han, and Q. Feng, Sep. Purif. Technol. 291, 121001 (2022).

    Article  Google Scholar 

  9. B. Yang, X. Tong, Z. Deng, and X. Lv, J. Chem. 2016, 1 (2016).

    Google Scholar 

  10. H. Zhang, F. Zhang, W. Sun, D. Chen, J. Chen, R. Wang, M. Han, and C. Zhang, Appl. Surf. Sci. 608, 154963 https://doi.org/10.1016/j.apsusc.2022.154963 (2023).

    Article  Google Scholar 

  11. S. Lin, C. Wang, R. Liu, W. Sun, and G. Jing, Appl. Surf. Sci. 577, 151756 https://doi.org/10.1016/j.apsusc.2021.151756 (2022).

    Article  Google Scholar 

  12. X. Niu, J. Chen, Y. Li, L. Xia, L. Li, H. Sun, and R. Ruan, Appl. Surf. Sci. 495, 143411 https://doi.org/10.1016/j.apsusc.2019.07.153 (2019).

    Article  Google Scholar 

  13. Q. Yin, D. Vaughan, K. England, G. Kelsall, and N. Brandon, J. Electrochem. Soc. 147, 2945 (2000).

    Article  Google Scholar 

  14. S.A. Khoso, Y. Hu, F. Lu, Y. Gao, R. Liu, and W. Sun, Trans. Nonferrous Met. Soc. China 29, 2604 https://doi.org/10.1016/s1003-6326(19)65167-8 (2019).

    Article  Google Scholar 

  15. Y. Li, W. Duan, W. Li, X. Yang, and W. Chen, Miner. Process. Extr. Metall. Rev. https://doi.org/10.1080/08827508.2022.2155958 (2022).

    Article  Google Scholar 

  16. J. Jin, J.D. Miller, L.X. Dang, and C.D. Wick, Int. J. Miner. Process. 139, 64 (2015).

    Article  Google Scholar 

  17. H. Zhao, X. Niu, B. Dong, X. Jia, and R. Ruan, Miner. Eng. 184, 107636 https://doi.org/10.1016/j.mineng.2022.107636 (2022).

    Article  Google Scholar 

  18. M. Segall, P.J. Lindan, M.A. Probert, C.J. Pickard, P.J. Hasnip, S. Clark, and M. Payne, J. Phys. Condens. Matter 14, 2717 (2002).

    Article  Google Scholar 

  19. L. Pauling and L. Brockway, Z. Für Krist.-Cryst. Mater. 82, 188 (1932).

    Article  Google Scholar 

  20. L.S. Ramsdell, Am. Mineral. J. Earth Planet. Mater. 10, 281 (1925).

    Google Scholar 

  21. J.P. Perdew, K. Burke, and Y. Wang, Phys. Rev. B 54, 16533 (1996).

    Article  Google Scholar 

  22. J. Chen, J. Wang, Y. Li, M. Liu, Y. Liu, C. Zhao, and W. Cui, Miner. Eng. 163, 106803 https://doi.org/10.1016/j.mineng.2021.106803 (2021).

    Article  Google Scholar 

  23. C.I. Pearce, R.A.D. Pattrick, D.J. Vaughan, C.M.B. Henderson, and G. van der Laan, Geochim. Cosmochim. Acta 70, 4635 https://doi.org/10.1016/j.gca.2006.05.017 (2006).

    Article  Google Scholar 

  24. Y. Liu, J. Chen, Y. Li, J. Zhang, and D. Kang, Physicochem. Probl. Miner. Process. https://doi.org/10.37190/ppmp/133010 (2021).

    Article  Google Scholar 

  25. H.T. Nguyen and M.T. Nguyen, J. Phys. Chem. A 118, 4079 https://doi.org/10.1021/jp5013945 (2014).

    Article  Google Scholar 

  26. P.H. Sit, M.H. Cohen, and A. Selloni, J. Phys. Chem. Lett. 3, 2409 https://doi.org/10.1021/jz300996c (2012).

    Article  Google Scholar 

  27. C.U. de Oliveira, G.F. de Lima, H.A. de Abreu, and H.I.A. Duarte, J. Phys. Chem. C 116, 6357 (2012).

    Article  Google Scholar 

  28. Z. Wei, Y. Li, H. Gao, Y. Zhu, G. Qian, and J. Yao, Appl. Surf. Sci. 492, 89 https://doi.org/10.1016/j.apsusc.2019.06.191 (2019).

    Article  Google Scholar 

  29. F. Göktepe, Turk. J. Eng. Environ. Sci. 26, 309 (2002).

    Google Scholar 

  30. Z. Wang, Y. Qian, L.-H. Xu, B. Dai, J.-H. Xiao, and K. Fu, Miner. Eng. 74, 86 (2015).

    Article  Google Scholar 

  31. X. Wang, J. Liu, Y. Zhu, and Y. Han, Colloids Surf. A 620, 126574 (2021).

    Article  Google Scholar 

  32. D. Fornasiero and J. Ralston, J. Colloid Interface Sci. 151, 225 (1992).

    Article  Google Scholar 

  33. D. Lu, Y. Hu, Q. Li, S. Yu, T. Jiang, W. Sun, and Y. Wang, Miner. Eng. 92, 57 https://doi.org/10.1016/j.mineng.2016.03.001 (2016).

    Article  Google Scholar 

  34. Y. Zhang, Z. Cao, Y. Cao, and C. Sun, J. Mol. Struct. 1048, 434 https://doi.org/10.1016/j.molstruc.2013.06.015 (2013).

    Article  Google Scholar 

  35. R. Szargan, S. Karthe, and E. Suoninen, Appl. Surf. Sci. 55, 227 (1992).

    Article  Google Scholar 

  36. X.-F. Zheng, L.-Z. Liu, Z.-Y. Nie, Y. Yang, J.-H. Chen, H.-Y. Yang, and J.-L. Xia, Miner. Eng. 138, 215 (2019).

    Article  Google Scholar 

  37. G. Han, S. Wen, H. Wang, and Q. Feng, Sep. Purif. Technol. 240, 116650 (2020).

    Article  Google Scholar 

  38. X. Zhang, Y. Han, P. Gao, and Y. Li, Miner. Eng. 145, 106070 https://doi.org/10.1016/j.mineng.2019.106070 (2020).

    Article  Google Scholar 

  39. A. Sarvaramini, F. Larachi, and B. Hart, Comput. Mater. Sci. 120, 108 https://doi.org/10.1016/j.commatsci.2016.04.023 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (2022YFC2904503); Open Foundation of State Key Laboratory of Mineral Processing (No. BGRIMM-KJSKL-2022-01); The National Natural Science Foundation of China (No. 52074356, No. U20A20269); The Science and Technology Innovation Program of Hunan Province (2022RC1183); The Natural Science Foundation of Hunan Province (No. 2021JJ20069); 2023 Innovation-driven Plan project of Central South University (No. 2023CXQD002); Changsha Science and Technology Project (Outstanding innovative youth training program); National 111 Project (No. B14034); The Fundamental Research Funds for the Central Universities of Central South University Project (No. 50621747). The Special fund for Carbon Peak and Carbon Neutrality science and technology innovation of Jiangsu Province in 2022 (BE2022601). The Computing Platform of Mineral Processing Computational Chemistry at the School of Mineral Processing, Bioengineering at Central South University, and the High-Performance Computing Centers of Central South University were used in part for this work.

Author information

Authors and Affiliations

Authors

Contributions

FZ: Writing-original draft, software, data curation, writing-review and editing. CZ: Supervision, conceptualization, methodology, funding acquisition, review and editing. HZ: Formal analysis, software, writing-review and editing. PC: Writing-review and editing, validation, investigation. RW: Writing-review and editing, investigation, validation. DC: Visualization, writing-review and editing, validation. JC: Visualization, writing-review and editing, validation. JC: Data curation, writing-review and editing. MT: Investigation, data curation, writing-review and editing. WS: Visualization, writing-review and editing, validation.

Corresponding author

Correspondence to Chenyang Zhang.

Ethics declarations

Competing interests

We certify that we have no financial or personal ties to individuals or groups that could unreasonably affect our work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 184 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, F., Zhang, C., Zhang, H. et al. Selective Adsorption Mechanism of Ferric Ions on the Surfaces of Chalcopyrite and Pyrite in Flotation. JOM 75, 4435–4445 (2023). https://doi.org/10.1007/s11837-023-06067-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-06067-z

Navigation