Skip to main content
Log in

Analysis of the Release Characteristics of Blast Furnace Lead Smelting Slag by Integrating Mineralogy and Dynamic/Static Leaching

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Open piles of lead and zinc smelting slag threaten the environment due to their releasing harmful heavy metals (HMs). However, the unclear relationship between mineral composition and heavy metal release in blast furnace lead smelting slag (BFLSS) has hindered the development of pollution prevention techniques. In this study, a combination of mineral liberation analysis (MLA) and dynamic/static heavy metal leaching tests was used to examine the relationship between the leaching characteristics of HMs and the mineral composition in BFLSS. MLA analysis showed that melilite (58.15%), pyrite (8.82%), magnetite (4.37%), pyroxene (5.77%), and Zn–Fe spinel (3.06%) were the main phases of BFLSS. The morphological analysis results indicate that Pb and Zn are highly migratory and bioavailable. The combined mineralogical and dynamic leaching experiments show that the release of the toxic HMs, Pb and Zn, from the smelter slag under acid rain conditions is mainly controlled by the acidic dissolution of the minerals and the partial oxidation of the pyrite. The combined mineralogical analysis and dynamic/static leaching experiments are significant in explaining the release mechanism of HMs from BFLSS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Reference

  1. S.R. Yang, T. Danek, X.F. Cheng, Q.R. Huang, and Iop, In 3rd World Multidisciplinary Earth Sciences Symposium (WMESS), (Prague, CZECH REPUBLIC, 2017).

  2. Z.W. Zhao, Z.B. Wang, W.B. Xu, W.N. Qin, J. Lei, Z.Q. Dong, and Y.J. Liang, J. Hazardous Mater. https://doi.org/10.1016/j.jhazmat.2021.125642 (2021).

    Article  Google Scholar 

  3. X.B. Wan, P. Taskinen, J.J. Shi, and A. Jokilaakso, J. Hazardous Mater. https://doi.org/10.1016/j.jhazmat.2021.125541 (2021).

    Article  Google Scholar 

  4. D.M. Xu, and R.B. Fu, J. Hazardous Mater. https://doi.org/10.1016/j.jhazmat.2021.127864 (2022).

    Article  Google Scholar 

  5. Q.H. Zhong, M.L. Yin, Q. Zhang, J.Z. Beiyuan, J. Liu, X. Yang, J. Wang, L.L. Wang, Y.J. Jiang, T.F. Xiao, and Z.F. Zhang, J. Hazardous Mater. https://doi.org/10.1016/j.jhazmat.2020.125015 (2021).

    Article  Google Scholar 

  6. F.Q. Gu, Y.B. Zhang, Z.J. Su, Y.K. Tu, S. Liu, and T. Jiang, J. Clean. Prod. https://doi.org/10.1016/j.jclepro.2021.126467 (2021).

    Article  Google Scholar 

  7. A. Amnai, D. Radola, F. Choulet, M. Buatier, and F. Gimbert, Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2021.145929 (2021).

    Article  Google Scholar 

  8. T.Z. Liu, F.L. Li, Z.S. Jin, and Y.G. Yang, Environ. Pollut. 238, 359–368 https://doi.org/10.1016/j.envpol.2018.03.022 (2018).

    Article  Google Scholar 

  9. W.J. Lin, T.F. Xiao, W.C. Zhou, and Z.P. Ning, Pol. J. Environ. Stud. 24, 575–583 (2015).

    Article  Google Scholar 

  10. Y.J. Liu, S.L. Wu, G. Southam, T.S. Chan, Y.R. Lu, D.J. Paterson, and L.B. Huang, J. Hazardous Mater. https://doi.org/10.1016/j.jhazmat.2020.124988 (2021).

    Article  Google Scholar 

  11. M.Y. Gu, Y.W. Zhong, L.J. Wang, and Z.C. Guo, Process Saf. Environ. Protect. https://doi.org/10.1016/j.psep.2021.10.027 (2021).

    Article  Google Scholar 

  12. L.Q. Zhang, H.H. Zhou, X. Chen, G.J. Liu, C.L. Jiang, and L.G. Zheng, Ecotoxicol. Environ. Saf. https://doi.org/10.1016/j.ecoenv.2021.112321 (2021).

    Article  Google Scholar 

  13. Y.B. Cui, L. Bai, C.H. Li, Z.J. He, and X.R. Liu, Sustain. Cities Soc. https://doi.org/10.1016/j.scs.2022.103796 (2022).

    Article  Google Scholar 

  14. J.L.T. Hage, and E. Mulder, Waste Manage. 24, 165–172 https://doi.org/10.1016/s0956-053x(03)00129-6 (2004).

    Article  Google Scholar 

  15. D. Varrica, E. Tamburo, N. Milia, E. Vallascas, V. Cortimiglia, G. De Giudici, G. Dongarra, E. Sanna, F. Monna, and R. Losno, Environ. Res. 134, 366–374 https://doi.org/10.1016/j.envres.2014.08.013 (2014).

    Article  Google Scholar 

  16. Y.X. Wang, J. Tang, and Z. Li, Environ. Res. https://doi.org/10.1016/j.envres.2021.111053 (2021).

    Article  Google Scholar 

  17. Y.T. Zong, Q. Xiao, and S.G. Lu, Environ. Sci. Pollut. Res. 23, 14600–14607 https://doi.org/10.1007/s11356-016-6652-y (2016).

    Article  Google Scholar 

  18. Y. Guo, Y.X. Zhang, X. Zhao, J. Xu, G.F. Qiu, W.K. Jia, J.J. Wu, and F.H. Guo, Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2022.154726 (2022).

    Article  Google Scholar 

  19. A. Krol, K. Mizerna, and M. Bozym, J. Hazardous Mater. https://doi.org/10.1016/j.jhazmat.2019.121502 (2020).

    Article  Google Scholar 

  20. E. Kim, L. Horckmans, J. Spooren, K.C. Vrancken, M. Quaghebeur, and K. Broos, Hydrometallurgy 169, 372–381 https://doi.org/10.1016/j.hydromet.2017.02.027 (2017).

    Article  Google Scholar 

  21. Z.S. Jin, T.Z. Liu, Y.G. Yang, and D. Jackson, Ecotoxicol. Environ. Saf. 104, 43–50 https://doi.org/10.1016/j.ecoenv.2014.02.003 (2014).

    Article  Google Scholar 

  22. M.J. Kang, S. Yu, S.W. Jeon, M.C. Jung, Y.K. Kwon, P.K. Lee, and G. Chae, Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2020.143884 (2021).

    Article  Google Scholar 

  23. H.H. Zhou, G.J. Liu, L.Q. Zhang, and C.C. Zhou, J. Hazardous Mater. https://doi.org/10.1016/j.jhazmat.2020.123293 (2021).

    Article  Google Scholar 

  24. J. Mulenshi, S. Gilbricht, S.C. Chelgani, and J. Rosenkranz, J. Geochem. Explorat. https://doi.org/10.1016/j.gexplo.2021.106777 (2021).

    Article  Google Scholar 

  25. A.E. Cleaver, H.E. Jamieson, C.J. Rickwood, and P. Huntsman, Appl. Geochem. https://doi.org/10.1016/j.apgeochem.2021.104927 (2021).

    Article  Google Scholar 

  26. B. Palumbo, M. Angelone, A. Bellanca, C. Dazzi, S. Hauser, R. Neri, and J. Wilson, Geoderma 95, 247–266 https://doi.org/10.1016/s0016-7061(99)00090-7 (2000).

    Article  Google Scholar 

  27. S.H. Zhang, N.W. Zhu, W.Q. Shen, X.R. Wei, F. Li, W.W. Ma, F.L. Mao, and P.X. Wu, Resources Conserv. Recycling. https://doi.org/10.1016/j.resconrec.2021.106098 (2022).

    Article  Google Scholar 

  28. H.W. Liu, Y. Zhang, J.S. Yang, H.Y. Wang, Y.L. Li, Y. Shi, D.C. Li, P.E. Holm, Q. Ou, and W.Y. Hu, Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2020.144879 (2021).

    Article  Google Scholar 

  29. X.L. Ma, H. Zuo, M.J. Tian, L.Y. Zhang, J. Meng, X.N. Zhou, N. Min, X.Y. Chang, and Y. Liu, Chemosphere 144, 264–272 https://doi.org/10.1016/j.chemosphere.2015.08.026 (2016).

    Article  Google Scholar 

  30. Y.Y. Long, L.F. Hu, C.R. Fang, Y.Y. Wu, and D.S. Shen, Microchem. J. 91, 1–5 https://doi.org/10.1016/j.microc.2008.05.006 (2009).

    Article  Google Scholar 

  31. L. Zhang, Q.J.H. Liao, S.G. Shao, N. Zhang, Q.S. Shen, and C. Liu, Int. J. Environ. Res. Public Health 12, 14115–14131 https://doi.org/10.3390/ijerph121114115 (2015).

    Article  Google Scholar 

  32. Y. Zhang, B.Z. Ren, A. Hursthouse, R.J. Deng, and B.L. Hou, Polish J. Environ. Stud. 28, 4017 (2019).

    Article  Google Scholar 

  33. X.L. Guo, H.S. Shi, and M.F. Xu, J. Wuhan Univ. Technol. Mater. Sci. Ed. 28, 938–943 https://doi.org/10.1007/s11595-013-0797-z (2013).

    Article  Google Scholar 

  34. K. Nemati, N.K. Abu Bakar, M.R. Abas, and E. Sobhanzadeh, J. Hazardous Mater. 192, 402 (2011).

    Google Scholar 

  35. J. Jiang, R.K. Xu, T.Y. Jiang, and Z. Li, J. Hazard. Mater. 229, 145–150 https://doi.org/10.1016/j.jhazmat.2012.05.086 (2012).

    Article  Google Scholar 

  36. J.Z. Wu, Z.T. Li, D. Huang, X.M. Liu, C.X. Tang, S.J. Parikh, and J.M. Xu, J. Hazardous Mater. https://doi.org/10.1016/j.jhazmat.2019.122010 (2020).

    Article  Google Scholar 

  37. D.M. Xu, R.B. Fu, J.X. Wang, and B.H. An, J. Hazardous Mater. https://doi.org/10.1016/j.jhazmat.2021.127127 (2022).

    Article  Google Scholar 

  38. J. Puziewicz, K. Zainoun, and H. Bril, Can. Mineral. 45, 1189–1200 https://doi.org/10.2113/gscanmin.45.5.1189 (2007).

    Article  Google Scholar 

  39. N.M. Piatak, and R.R. Seal, Appl. Geochem. 25, 302–320 https://doi.org/10.1016/j.apgeochem.2009.12.001 (2010).

    Article  Google Scholar 

  40. V. Ettler, Z. Johan, B. Kribek, O. Sebek, and M. Mihaljevic, Appl. Geochem. 24, 1 (2009).

    Article  Google Scholar 

  41. S. Mostaghel, C. Samuelsson, and B. Bjorkman, Int. J. Miner. Metall. Mater. 20, 234 (2013).

    Article  Google Scholar 

  42. V. Ettler, O. Legendre, F. Bodenan, and J.C. Touray, Can. Mineral. 39, 873 (2001).

    Article  Google Scholar 

  43. A. Elghali, M. Benzaazoua, H. Bouzahzah, M. Abdelmoula, J.J. Dynes, and H.E. Jamieson, Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2021.147105 (2021).

    Article  Google Scholar 

  44. D.-M. Xu, R.-B. Fu, J.-X. Wang, and B.-H. An, J. Hazardous Mater. https://doi.org/10.1016/j.jhazmat.2021.127127 (2022).

    Article  Google Scholar 

  45. P. Chen, H.P. Bie, and R.S. Bie, Korean J. Chem. Eng. 35, 1911–1918 https://doi.org/10.1007/s11814-018-0103-z (2018).

    Article  Google Scholar 

  46. G.F. Wang, H.Z. Xiao, G.C. Liang, J.L. Zhu, C.L. He, S.J. Ma, Z. Shuai, and S. Komarneni, J. Clean. Prod. https://doi.org/10.1016/j.jclepro.2022.131041 (2022).

    Article  Google Scholar 

  47. E.K. Demir, B.N. Yaman, P.A. Celik, and E. Sahinkaya, J. Water Process Eng. https://doi.org/10.1016/j.jwpe.2020.101610 (2020).

    Article  Google Scholar 

Download references

Acknowledgement

This study was financially supported by the National Key Research and Development Program of China (2019YFC1803501), the National Natural Science Foundation of China (52000094).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qi Meng or Peng Dong.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 177 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, J., Li, C., Xie, R. et al. Analysis of the Release Characteristics of Blast Furnace Lead Smelting Slag by Integrating Mineralogy and Dynamic/Static Leaching. JOM 76, 958–968 (2024). https://doi.org/10.1007/s11837-023-06062-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-06062-4

Navigation