Abstract
Open piles of lead and zinc smelting slag threaten the environment due to their releasing harmful heavy metals (HMs). However, the unclear relationship between mineral composition and heavy metal release in blast furnace lead smelting slag (BFLSS) has hindered the development of pollution prevention techniques. In this study, a combination of mineral liberation analysis (MLA) and dynamic/static heavy metal leaching tests was used to examine the relationship between the leaching characteristics of HMs and the mineral composition in BFLSS. MLA analysis showed that melilite (58.15%), pyrite (8.82%), magnetite (4.37%), pyroxene (5.77%), and Zn–Fe spinel (3.06%) were the main phases of BFLSS. The morphological analysis results indicate that Pb and Zn are highly migratory and bioavailable. The combined mineralogical and dynamic leaching experiments show that the release of the toxic HMs, Pb and Zn, from the smelter slag under acid rain conditions is mainly controlled by the acidic dissolution of the minerals and the partial oxidation of the pyrite. The combined mineralogical analysis and dynamic/static leaching experiments are significant in explaining the release mechanism of HMs from BFLSS.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Reference
S.R. Yang, T. Danek, X.F. Cheng, Q.R. Huang, and Iop, In 3rd World Multidisciplinary Earth Sciences Symposium (WMESS), (Prague, CZECH REPUBLIC, 2017).
Z.W. Zhao, Z.B. Wang, W.B. Xu, W.N. Qin, J. Lei, Z.Q. Dong, and Y.J. Liang, J. Hazardous Mater. https://doi.org/10.1016/j.jhazmat.2021.125642 (2021).
X.B. Wan, P. Taskinen, J.J. Shi, and A. Jokilaakso, J. Hazardous Mater. https://doi.org/10.1016/j.jhazmat.2021.125541 (2021).
D.M. Xu, and R.B. Fu, J. Hazardous Mater. https://doi.org/10.1016/j.jhazmat.2021.127864 (2022).
Q.H. Zhong, M.L. Yin, Q. Zhang, J.Z. Beiyuan, J. Liu, X. Yang, J. Wang, L.L. Wang, Y.J. Jiang, T.F. Xiao, and Z.F. Zhang, J. Hazardous Mater. https://doi.org/10.1016/j.jhazmat.2020.125015 (2021).
F.Q. Gu, Y.B. Zhang, Z.J. Su, Y.K. Tu, S. Liu, and T. Jiang, J. Clean. Prod. https://doi.org/10.1016/j.jclepro.2021.126467 (2021).
A. Amnai, D. Radola, F. Choulet, M. Buatier, and F. Gimbert, Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2021.145929 (2021).
T.Z. Liu, F.L. Li, Z.S. Jin, and Y.G. Yang, Environ. Pollut. 238, 359–368 https://doi.org/10.1016/j.envpol.2018.03.022 (2018).
W.J. Lin, T.F. Xiao, W.C. Zhou, and Z.P. Ning, Pol. J. Environ. Stud. 24, 575–583 (2015).
Y.J. Liu, S.L. Wu, G. Southam, T.S. Chan, Y.R. Lu, D.J. Paterson, and L.B. Huang, J. Hazardous Mater. https://doi.org/10.1016/j.jhazmat.2020.124988 (2021).
M.Y. Gu, Y.W. Zhong, L.J. Wang, and Z.C. Guo, Process Saf. Environ. Protect. https://doi.org/10.1016/j.psep.2021.10.027 (2021).
L.Q. Zhang, H.H. Zhou, X. Chen, G.J. Liu, C.L. Jiang, and L.G. Zheng, Ecotoxicol. Environ. Saf. https://doi.org/10.1016/j.ecoenv.2021.112321 (2021).
Y.B. Cui, L. Bai, C.H. Li, Z.J. He, and X.R. Liu, Sustain. Cities Soc. https://doi.org/10.1016/j.scs.2022.103796 (2022).
J.L.T. Hage, and E. Mulder, Waste Manage. 24, 165–172 https://doi.org/10.1016/s0956-053x(03)00129-6 (2004).
D. Varrica, E. Tamburo, N. Milia, E. Vallascas, V. Cortimiglia, G. De Giudici, G. Dongarra, E. Sanna, F. Monna, and R. Losno, Environ. Res. 134, 366–374 https://doi.org/10.1016/j.envres.2014.08.013 (2014).
Y.X. Wang, J. Tang, and Z. Li, Environ. Res. https://doi.org/10.1016/j.envres.2021.111053 (2021).
Y.T. Zong, Q. Xiao, and S.G. Lu, Environ. Sci. Pollut. Res. 23, 14600–14607 https://doi.org/10.1007/s11356-016-6652-y (2016).
Y. Guo, Y.X. Zhang, X. Zhao, J. Xu, G.F. Qiu, W.K. Jia, J.J. Wu, and F.H. Guo, Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2022.154726 (2022).
A. Krol, K. Mizerna, and M. Bozym, J. Hazardous Mater. https://doi.org/10.1016/j.jhazmat.2019.121502 (2020).
E. Kim, L. Horckmans, J. Spooren, K.C. Vrancken, M. Quaghebeur, and K. Broos, Hydrometallurgy 169, 372–381 https://doi.org/10.1016/j.hydromet.2017.02.027 (2017).
Z.S. Jin, T.Z. Liu, Y.G. Yang, and D. Jackson, Ecotoxicol. Environ. Saf. 104, 43–50 https://doi.org/10.1016/j.ecoenv.2014.02.003 (2014).
M.J. Kang, S. Yu, S.W. Jeon, M.C. Jung, Y.K. Kwon, P.K. Lee, and G. Chae, Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2020.143884 (2021).
H.H. Zhou, G.J. Liu, L.Q. Zhang, and C.C. Zhou, J. Hazardous Mater. https://doi.org/10.1016/j.jhazmat.2020.123293 (2021).
J. Mulenshi, S. Gilbricht, S.C. Chelgani, and J. Rosenkranz, J. Geochem. Explorat. https://doi.org/10.1016/j.gexplo.2021.106777 (2021).
A.E. Cleaver, H.E. Jamieson, C.J. Rickwood, and P. Huntsman, Appl. Geochem. https://doi.org/10.1016/j.apgeochem.2021.104927 (2021).
B. Palumbo, M. Angelone, A. Bellanca, C. Dazzi, S. Hauser, R. Neri, and J. Wilson, Geoderma 95, 247–266 https://doi.org/10.1016/s0016-7061(99)00090-7 (2000).
S.H. Zhang, N.W. Zhu, W.Q. Shen, X.R. Wei, F. Li, W.W. Ma, F.L. Mao, and P.X. Wu, Resources Conserv. Recycling. https://doi.org/10.1016/j.resconrec.2021.106098 (2022).
H.W. Liu, Y. Zhang, J.S. Yang, H.Y. Wang, Y.L. Li, Y. Shi, D.C. Li, P.E. Holm, Q. Ou, and W.Y. Hu, Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2020.144879 (2021).
X.L. Ma, H. Zuo, M.J. Tian, L.Y. Zhang, J. Meng, X.N. Zhou, N. Min, X.Y. Chang, and Y. Liu, Chemosphere 144, 264–272 https://doi.org/10.1016/j.chemosphere.2015.08.026 (2016).
Y.Y. Long, L.F. Hu, C.R. Fang, Y.Y. Wu, and D.S. Shen, Microchem. J. 91, 1–5 https://doi.org/10.1016/j.microc.2008.05.006 (2009).
L. Zhang, Q.J.H. Liao, S.G. Shao, N. Zhang, Q.S. Shen, and C. Liu, Int. J. Environ. Res. Public Health 12, 14115–14131 https://doi.org/10.3390/ijerph121114115 (2015).
Y. Zhang, B.Z. Ren, A. Hursthouse, R.J. Deng, and B.L. Hou, Polish J. Environ. Stud. 28, 4017 (2019).
X.L. Guo, H.S. Shi, and M.F. Xu, J. Wuhan Univ. Technol. Mater. Sci. Ed. 28, 938–943 https://doi.org/10.1007/s11595-013-0797-z (2013).
K. Nemati, N.K. Abu Bakar, M.R. Abas, and E. Sobhanzadeh, J. Hazardous Mater. 192, 402 (2011).
J. Jiang, R.K. Xu, T.Y. Jiang, and Z. Li, J. Hazard. Mater. 229, 145–150 https://doi.org/10.1016/j.jhazmat.2012.05.086 (2012).
J.Z. Wu, Z.T. Li, D. Huang, X.M. Liu, C.X. Tang, S.J. Parikh, and J.M. Xu, J. Hazardous Mater. https://doi.org/10.1016/j.jhazmat.2019.122010 (2020).
D.M. Xu, R.B. Fu, J.X. Wang, and B.H. An, J. Hazardous Mater. https://doi.org/10.1016/j.jhazmat.2021.127127 (2022).
J. Puziewicz, K. Zainoun, and H. Bril, Can. Mineral. 45, 1189–1200 https://doi.org/10.2113/gscanmin.45.5.1189 (2007).
N.M. Piatak, and R.R. Seal, Appl. Geochem. 25, 302–320 https://doi.org/10.1016/j.apgeochem.2009.12.001 (2010).
V. Ettler, Z. Johan, B. Kribek, O. Sebek, and M. Mihaljevic, Appl. Geochem. 24, 1 (2009).
S. Mostaghel, C. Samuelsson, and B. Bjorkman, Int. J. Miner. Metall. Mater. 20, 234 (2013).
V. Ettler, O. Legendre, F. Bodenan, and J.C. Touray, Can. Mineral. 39, 873 (2001).
A. Elghali, M. Benzaazoua, H. Bouzahzah, M. Abdelmoula, J.J. Dynes, and H.E. Jamieson, Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2021.147105 (2021).
D.-M. Xu, R.-B. Fu, J.-X. Wang, and B.-H. An, J. Hazardous Mater. https://doi.org/10.1016/j.jhazmat.2021.127127 (2022).
P. Chen, H.P. Bie, and R.S. Bie, Korean J. Chem. Eng. 35, 1911–1918 https://doi.org/10.1007/s11814-018-0103-z (2018).
G.F. Wang, H.Z. Xiao, G.C. Liang, J.L. Zhu, C.L. He, S.J. Ma, Z. Shuai, and S. Komarneni, J. Clean. Prod. https://doi.org/10.1016/j.jclepro.2022.131041 (2022).
E.K. Demir, B.N. Yaman, P.A. Celik, and E. Sahinkaya, J. Water Process Eng. https://doi.org/10.1016/j.jwpe.2020.101610 (2020).
Acknowledgement
This study was financially supported by the National Key Research and Development Program of China (2019YFC1803501), the National Natural Science Foundation of China (52000094).
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Conflict of interest
On behalf of all authors, the corresponding author states that there is no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Yan, J., Li, C., Xie, R. et al. Analysis of the Release Characteristics of Blast Furnace Lead Smelting Slag by Integrating Mineralogy and Dynamic/Static Leaching. JOM 76, 958–968 (2024). https://doi.org/10.1007/s11837-023-06062-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11837-023-06062-4