Skip to main content
Log in

Research on the Performance of the Deep Drawing Formation Process for AZ31 Magnesium Alloy

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

In this study, the effects of temperature, drawing speed, and mold structure on the drawing properties of AZ31 magnesium alloy sheets are examined. Experimental results indicate that the maximum drawing force gradually decreases as temperature increases, and the optimal deep drawing performance of the sheet occurs at 200–300°C. With an increasing drawing speed, the maximum drawing force first decreases and then begins to increase. If the drawing speed is too fast, it will cause a ductile fracture in the sheet, and the ideal deed drawing performance occurs when the drawing speed is 12–24 mm/min. If the die fillet radius is too large, the edge of the specimen will lose stability before entering the mold, resulting in wrinkles, due to the tangential compressive stress. If the die fillet radius is too small, cracks are prone to occur due to the large amount of friction, so a 10 mm die fillet radius is recommended. Finally, simulations were carried out using the same conditions as the experiments, from which only small maximum drawing height errors were observed. The fracture locations were consistent with the experiments, demonstrating the accuracy of the models which were used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. F. Zhang, Z. Liu, Y. Wang, P.L. Mao, X.W. Kuang, Z.L. Zhang, Y.D. Ju, and X.Z. Xu, J. Magnesium Alloys. https://doi.org/10.1016/j.jma.2019.05.013 (2020).

    Article  Google Scholar 

  2. A. Javaid, and F. Czerwinski, J. Magnesium Alloys. https://doi.org/10.1016/j.jma.2020.10.003 (2020).

    Article  Google Scholar 

  3. J.F. Song, J. Chen, X.M. Xiong, X.D. Peng, D.L. Chen, and F.S. Pan, J. Magnesium Alloys. https://doi.org/10.1016/j.jma.2022.04.001 (2022).

    Article  Google Scholar 

  4. M. Li, D.D. Zhang, F. Peng, J.N. Xie, X.R. Zhang, S. Qian, Y. Zhang, X.Y. Liu, and B. Yu, Acta Biomater. https://doi.org/10.1016/j.actbio.2022.08.066 (2022).

    Article  Google Scholar 

  5. F.F. Li, and G. Fang, Int. J. Plast. https://doi.org/10.1016/j.ijplas.2022.103258 (2022).

    Article  Google Scholar 

  6. Y.Y. Li, B.W. Yang, T.Z. Han, Z.B. Chu, L.F. Tuo, C. Xue, Q.H. Yang, X.D. Zhao, and H. Gao, Mater. Sci. Eng. A. https://doi.org/10.1016/j.msea.2022.143234 (2022).

    Article  Google Scholar 

  7. F.S. Pan, and B. Jiang, ACTA METALL SIN-ENGL 57, 1362 (2021).

    Google Scholar 

  8. H. Zhang, Y. Liu, J.F. Fan, H.J. Roven, W.L. Cheng, B.S. Xu, and H.B. Dong, J. Alloys Compd. https://doi.org/10.1016/j.jallcom.2014.07.045 (2014).

    Article  Google Scholar 

  9. R.K. Sabat, S.K. Sahoo, D. Panda, U.K. Mohanty, and S. Suwas, Mater. Perform. Charact. https://doi.org/10.1016/j.matchar.2017.09.003 (2017).

    Article  Google Scholar 

  10. K.J. Tam, M.W. Vaughan, L.M. Shen, M. Knezevic, I. Karaman, and G. Proust, Int. J. Mech. Sci. https://doi.org/10.1016/j.ijmecsci.2020.105727 (2020)

  11. L. Yang, Y.P. Guan, Y.C. Duan, and M.L. Zhou, J. Plast. Eng. 23, 27 (2016).

    Google Scholar 

  12. Z.M. Wang, R.Y. Gu, S.H. Chen, W.R. Wang, and X.C. Wei, J Mater Process Technol. https://doi.org/10.1016/j.jmatprotec.2018.03.004 (2017).

    Article  Google Scholar 

  13. Y.P. Guan, L. Yang, and Y.C. Duan, Forg. Stamping Technol. https://doi.org/10.13330/j.issn.1000-3940.2014.06.009 (2014).

  14. F. Feng, S.Y. Huang, Z.H. Meng, J.H. Hu, Y. Lei, M.C. Zhou, D. Wu, and Z.Z. Yang, Mater. Des. https://doi.org/10.1016/j.matdes.2013.12.031 (2014).

    Article  Google Scholar 

  15. W.R. Wang, S.C. Chen, K.H. Tao, K.X. Gao, and X.C. Wei, Int. J. Adv. Manuf. Technol. https://doi.org/10.1007/s00170-017-0196-2 (2017).

    Article  Google Scholar 

  16. S.H. Zhang, G.S. Song, H.W. Song, and M. Cheng, J. Mech. Eng. 48, 28 (2012).

    Article  Google Scholar 

  17. R. Courant, Bull New Ser Am Math Soc. https://doi.org/10.1090/s0002-9904-1943-07818-4 (1943).

    Article  Google Scholar 

  18. J.T. Oden, Int J Numer Methods Eng. https://doi.org/10.1002/nme.1620010304 (1969).

    Article  Google Scholar 

  19. H.J. Bong, J.W. Lee, X.H. Hu, X. Sun, and M.G. Lee, Int. J. Plast. https://doi.org/10.1016/j.ijplas.2019.11.009 (2020).

    Article  Google Scholar 

  20. Q.Q. Zhu, S. Huang, D.X. Wang, J.P. Li, F.A. Hua, and P. Yang, J Manuf Process. https://doi.org/10.1016/j.jmapro.2022.05.054 (2022).

    Article  Google Scholar 

  21. F. Abbassi, M. Srinivasan, C. Loganathan, R. Narayanasamy, and M. Gupta, J. Magnesium Alloys. https://doi.org/10.1016/j.jma.2016.10.004 (2016).

    Article  Google Scholar 

  22. A. Milenin, P. Kustra, T. Furushima, P.H. Du, and J. Němeček, J Mater Process Technol. https://doi.org/10.1016/j.jmatprotec.2018.06.018 (2018).

    Article  Google Scholar 

  23. Z.H. Jiao, L.H. Lang, and X.N. Zhao, Trans. Nonferrous Met. Soc. China. https://doi.org/10.1016/S1003-6326(21)65704-7 (2021).

    Article  Google Scholar 

  24. T.-T. Luyen, V.-C. Tong, and D.-T. Nguyen, Alexandria Eng. J. https://doi.org/10.1016/j.aej.2021.07.009 (2022).

    Article  Google Scholar 

  25. N. Bian, F. Li, Y. Wang, and C. Li, Mater. Today Commun. https://doi.org/10.1016/j.mtcomm.2022.103384 (2022).

    Article  Google Scholar 

  26. L.L. Hu, P. Feng, Y.R. Meng, and J. Yang, Eng. Struct. https://doi.org/10.1016/j.engstruct.2021.112853 (2021).

    Article  Google Scholar 

  27. J. Xu, T.H. Yang, B. Jiang, J.F. Song, J.J. He, Q.H. Wang, Y.F. Chai, G.S. Huang, and F.S. Pan, J. Alloys Compd. https://doi.org/10.1016/j.jallcom.2018.05.083 (2018).

    Article  Google Scholar 

  28. S. Tantideeravit, and M. Kamaya, Results Mater. https://doi.org/10.1016/j.rinma.2020.100142 (2020).

    Article  Google Scholar 

  29. C.S. Hyun, M.S. Kim, S.-H. Choi, and K.S. Shin, Acta Mater. https://doi.org/10.1016/j.actamat.2018.06.042 (2018).

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Natural Science Foundation of China (Grant No. 51905371).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fengmei Xue.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest. The founding sponsors had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the decision to publish the results.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Xue, F., Liu, Q. et al. Research on the Performance of the Deep Drawing Formation Process for AZ31 Magnesium Alloy. JOM 75, 4300–4307 (2023). https://doi.org/10.1007/s11837-023-06051-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-06051-7

Navigation