Skip to main content
Log in

Work Hardening and Kinetics Analysis of Al0.3MnCrCoFeNi High-Entropy Alloy

  • Advanced Materials for Additive Manufacturing
  • Published:
JOM Aims and scope Submit manuscript

Abstract

There is a lot of interest in examining high-entropy alloys (HEAs) due to the high work hardening and, consequently, increased strength and ductility synergy. In this research, the addition of 5 at.% Al element to the MnCrCoFeNi alloy and its effect on work hardening, deformation activation energy, critical temperature, and work-hardening exponent were investigated. For this purpose, the alloy was melted in a vacuum arc remelting furnace. After casting, homogenization, and cold rolling, the samples were annealed at 1100°C for 1 h. The produced alloy is a single-phase solid solution with a face-centered cubic (FCC) crystal lattice. Examining the work-hardening diagrams indicates that twinning exists in the microstructure of the alloy and is involved in the deformation mechanism. By adding 5 at.% aluminum to the Cantor alloy, the work-hardening exponent increased by 20% at room temperature and 200% at 600°C, recrystallization temperature increased up to ~ 200°C, and the activation energy of the deformation, ~ 445 kJ/mol, was calculated. The steady-state stress equation was also calculated versus to the strain rate, temperature, and the Zener parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. B. Cantor, I.T.H. Chang, P. Knight, and A.J.B. Vincent, Mater. Sci. Eng. A 375–377, 213 (2004).

    Article  Google Scholar 

  2. N.D. Stepanov, D.G. Shaysultanov, N.Y. Yurchenko, S.V. Zherebtsov, A.N. Ladygin, G.A. Salishchev, and M.A. Tikhonovsky, Mater. Sci. Eng. A 636, 188 (2015).

    Article  Google Scholar 

  3. O.N. Senkov, J.M. Scott, S.V. Senkova, D.B. Miracle, and C.F. Woodward, J. Alloys Compd. 509, 6043 (2011).

    Article  Google Scholar 

  4. C.-J. Tong, M.-R. Chen, J.-W. Yeh, S.-J. Lin, S.-K. Chen, T.-T. Shun, and S.-Y. Chang, Metall. Mater. Trans. A 36, 1263 (2005).

    Article  Google Scholar 

  5. G.A. Salishchev, M.A. Tikhonovsky, D.G. Shaysultanov, N.D. Stepanov, A.V. Kuznetsov, I.V. Kolodiy, A.S. Tortika, and O.N. Senkov, J. Alloys Compd. 591, 11 (2014).

    Article  Google Scholar 

  6. C. Dai, T. Zhao, C. Du, Z. Liu, and D. Zhang, J. Mater. Sci. Technol. 46, 64 (2020).

    Article  Google Scholar 

  7. E. Abbasi, and K. Dehghani, J. Alloys Compd. 783, 292 (2019).

    Article  Google Scholar 

  8. N.D. Stepanov, D.G. Shaysultanov, G.A. Salishchev, M.A. Tikhonovsky, E.E. Oleynik, A.S. Tortika, and O.N. Senkov, J. Alloys Compd. 628, 170 (2015).

    Article  Google Scholar 

  9. M. Troparevsky, J. Morris, P. Kent, A. Lupini, and G. Stocks, Phys. Rev. X 5, 11041 (2015).

    Google Scholar 

  10. J.C. Rao, H.Y. Diao, V. Ocelík, D. Vainchtein, C. Zhang, C. Kuo, Z. Tang, W. Guo, J.D. Poplawsky, Y. Zhou, P.K. Liaw, and J.T.M. De Hosson, Acta Mater. 131, 206 (2017).

    Article  Google Scholar 

  11. Z. Tang, M.C. Gao, H. Diao, T. Yang, J. Liu, T. Zuo, Y. Zhang, Z. Lu, Y. Cheng, Y. Zhang, K.A. Dahmen, P.K. Liaw, and T. Egami, JOM 65, 1848 (2013).

    Article  Google Scholar 

  12. C. Varvenne, and W.A. Curtin, Scr. Mater. 138, 92 (2017).

    Article  Google Scholar 

  13. J. Moon, J.W. Bae, M.J. Jang, S.M. Baek, D. Yim, B.-J. Lee, and H.S. Kim, Mater. Chem. Phys. 210, 187 (2018).

    Article  Google Scholar 

  14. L. Lin, X. Xian, Z. Zhong, Y. Wu, and P.K. Liaw, Met. Mater. Int. 26, 1192 (2020).

    Article  Google Scholar 

  15. J.Y. He, W.H. Liu, H. Wang, Y. Wu, X.J. Liu, T.G. Nieh, and Z.P. Lu, Acta Mater. 62, 105 (2014).

    Article  Google Scholar 

  16. C. Yuhua, M. Yuqing, L. Weiwei, and H. Peng, Opt. Laser Technol. 91, 197 (2017).

    Article  Google Scholar 

  17. Y. Bai, D.C. Nardi, X. Zhou, R.A. Picón, and J. Flórez-López, Comput. Struct. 256, 106639 (2021).

    Article  Google Scholar 

  18. Z.Y. Zhu, Y.L. Liu, G.Q. Gou, W. Gao, and J. Chen, Sci. Rep. 11, 10020 (2021).

    Article  Google Scholar 

  19. Y. Nan, Y. Ning, H. Liang, H. Guo, Z. Yao, and M.W. Fu, Mater. Des. 82, 84 (2015).

    Article  Google Scholar 

  20. C.A.C. Imbert, and H.J. McQueen, Mater. Sci. Eng. A 313, 88 (2001).

    Article  Google Scholar 

  21. X. Wang, Y. Zhang, and X. Ma, Mater. Sci. Eng. A 778, 139077 (2020).

    Article  Google Scholar 

  22. R. Ebrahimi, S.H. Zahiri, and A. Najafizadeh, J. Mater. Process. Technol. 171, 301 (2006).

    Article  Google Scholar 

  23. H. Mirzadeh, and A. Najafizadeh, Mater. Sci. Eng. A 527, 1856 (2010).

    Article  Google Scholar 

  24. H. Deng, Y. Chen, Y. Jia, Y. Pang, T. Zhang, S. Wang, and L. Yin, J. Manuf. Process. 64, 379 (2021).

    Article  Google Scholar 

  25. N. Nayan, G. Singh, S.V.S.N. Murty, A.K. Jha, B. Pant, K.M. George, and U. Ramamurty, Intermetallics 55, 145 (2014).

    Article  Google Scholar 

  26. J.Y. He, C. Zhu, D.Q. Zhou, W.H. Liu, T.G. Nieh, and Z.P. Lu, Intermetallics 55, 9 (2014).

    Article  Google Scholar 

  27. Y. Chen, S. Sun, T. Zhang, X. Zhou, and S. Li, Mater. Sci. Eng. A 771, 138545 (2020).

    Article  Google Scholar 

  28. B. Zhang, Z. Wang, H. Yu, and Y. Ning, J. Alloys Compd. 900, 163515 (2022).

    Article  Google Scholar 

  29. Y. Zhao, J. Mater. Res. Technol. 21, 546 (2022).

    Article  MathSciNet  Google Scholar 

  30. S. Zhang, B. Han, T. Zhang, Y. Chen, J. Xie, Y. Shen, L. Huang, X. Qin, Y. Wu, and K. Pu, Intermetallics 159, 107939 (2023).

    Article  Google Scholar 

  31. X. Wang, X. Li, H. Xie, T. Fan, L. Zhang, K. Li, Y. Cao, X. Yang, B. Liu, and P. Bai, J. Mater. Res. Technol. 23, 1130 (2023).

    Article  Google Scholar 

  32. L. Lai, M. Gan, J. Wang, L. Chen, X. Liang, J. Feng, and X. Chong, J. Am. Ceram. Soc. 106, 4343 (2023).

    Article  Google Scholar 

  33. Y. Zhang, and P.W. Jie, Proc. Eng. 27, 1169–1178 (2012).

    Article  Google Scholar 

  34. X. Yang, and Y. Zhang, Mater. Chem. Phys. 132, 233 (2012).

    Article  Google Scholar 

  35. S. Guo, C. Ng, J. Lu, and C.T. Liu, J. Appl. Phys. 109, 103505 (2011).

    Article  Google Scholar 

  36. L. Jiang, D. Qiao, Z. Cao, C. Lu, M. Song, and L. Wang, Mater. Sci. Eng. A 776, 139027 (2020).

    Article  Google Scholar 

  37. Z. Zhang, Q. Yang, Z. Yu, H. Wang, and T. Zhang, Mater. Charact. 189, 111962 (2022).

    Article  Google Scholar 

  38. H. Kaypour, S. Nategh, R. Gholamipour, and A. Khodabandeh, Mater. Res. Express 8, 66505 (2021).

    Article  Google Scholar 

  39. W.H. Liu, Z.P. Lu, J.Y. He, J.H. Luan, Z.J. Wang, B. Liu, Y. Liu, M.W. Chen, and C.T. Liu, Acta Mater. 116, 332 (2016).

    Article  Google Scholar 

  40. F. Otto, N.L. Hanold, and E.P. George, Intermetallics 54, 39 (2014).

    Article  Google Scholar 

  41. G. Laplanche, O. Horst, F. Otto, G. Eggeler, and E.P. George, J. Alloys Compd. 647, 548 (2015).

    Article  Google Scholar 

  42. Q.H. Tang, Y. Huang, Y.Y. Huang, X.Z. Liao, T.G. Langdon, and P.Q. Dai, Mater. Lett. 151, 126 (2015).

    Article  Google Scholar 

  43. H. Shahmir, J. He, Z. Lu, M. Kawasaki, and T.G. Langdon, Mater. Sci. Eng. A 676, 294 (2016).

    Article  Google Scholar 

  44. A. Rohatgi, K.S. Vecchio, and G.T. Gray, Metall. Mater. Trans. A 32, 135 (2001).

    Article  Google Scholar 

  45. S. Asgari, E. El-Danaf, S.R. Kalidindi, and R.D. Doherty, Metall. Mater. Trans. A 28, 1781 (1997).

    Article  Google Scholar 

  46. A.J. Zaddach, C. Niu, C.C. Koch, and D.L. Irving, JOM 65, 1780 (2013).

    Article  Google Scholar 

  47. Y.-Y. Wang, C. Jia, M. Tayebi, and B. Hamawandi, Mater. Basel. 15, 6428 (2022).

    Google Scholar 

  48. X. Wang, J. Yang, P. Chi, E. Bahonar, and M. Tayebi, J. Alloys Compd. 901, 163422 (2021).

    Article  Google Scholar 

  49. S.F. Mousavi, H. Sharifi, M. Tayebi, B. Hamawandi, and Y. Behnamian, Sci. Rep. 12, 15191 (2022).

    Article  Google Scholar 

  50. Y.Y. Wang, C. Jia, M. Xu, M. Kaseem, and M. Tayebi, Mater. Basel. 16, 3885 (2023).

    Google Scholar 

  51. R.S. Mishra, N. Kumar, and M. Komarasamy, Mater. Sci. Technol. 31, 1259 (2015).

    Article  Google Scholar 

  52. H.J. McQueen, and N.D. Ryan, Mater. Sci. Eng. A 322, 43 (2002).

    Article  Google Scholar 

  53. M. Shaban, and B. Eghbali, Mater. Sci. Eng. A 527, 4320 (2010).

    Article  Google Scholar 

  54. M. Annasamy, N. Haghdadi, A. Taylor, P. Hodgson, and D. Fabijanic, Mater. Sci. Eng. A 754, 282 (2019).

    Article  Google Scholar 

  55. W.H. Liu, Y. Wu, J.Y. He, T.G. Nieh, and Z.P. Lu, Scr. Mater. 68, 526 (2013).

    Article  Google Scholar 

  56. D.H. Lee, I.C. Choi, G. Yang, Z. Lu, M. Kawasaki, U. Ramamurty, R. Schwaiger, and J. Jang, Scr. Mater. 156, 129 (2018).

    Article  Google Scholar 

  57. A. Smolej, B. Skaza, and M. Fazarinc, RMZ Mater. Geoenviron. 56, 389–399 (2009).

    Google Scholar 

  58. A.S. Hamada, L.P. Karjalainen, and M.C. Somani, Mater. Sci. Eng. A 467, 114 (2007).

    Article  Google Scholar 

  59. C. Imbert, N.D. Ryan, and H.J. McQueen, Metall. Trans. A 15, 1855 (1984).

    Article  Google Scholar 

  60. Y. Lü, D.A. Molodov, and G. Gottstein, Acta Mater. 59, 3229 (2011).

    Article  Google Scholar 

  61. C.A.C. Imbert, and H.J. McQueen, Mater. Sci. Technol. 16, 524 (2000).

    Article  Google Scholar 

  62. S.F. Medina, and P. Fabregue, J. Mater. Sci. 26, 5427 (1991).

    Article  Google Scholar 

  63. Z. Wu, H. Bei, G.M. Pharr, and E.P. George, Acta Mater. 81, 428 (2014).

    Article  Google Scholar 

  64. J.X. Fang, J.X. Wang, Y.J. Wang, H.T. He, D.B. Zhang, and Y. Cao, Mater. Sci. Eng. A 847, 143319 (2022).

    Article  Google Scholar 

  65. N. Kumar, Q. Ying, X. Nie, R.S. Mishra, Z. Tang, P.K. Liaw, R.E. Brennan, K.J. Doherty, and K.C. Cho, Mater. Des. 86, 598 (2015).

    Article  Google Scholar 

  66. R. Sivakami, S. Dhanuskodi, and R. Karvembu, Spectrochim Acta Part A Mol. Biomol. Spectrosc. 152, 43 (2016).

    Article  Google Scholar 

  67. H. Kaypour, S. Nategh, R. Gholamipour, and A. Khodabandeh, Trans. Indian Inst. Met. 76, 119 (2023).

    Article  Google Scholar 

  68. M.N. Hasan, Y.F. Liu, X.H. An, J. Gu, M. Song, Y. Cao, Y.S. Li, Y.T. Zhu, and X.Z. Liao, Int. J. Plast. 123, 178 (2019).

    Article  Google Scholar 

  69. L. Sun, X. He, and J. Lu, Npj Comput. Mater. 4, 6 (2018).

    Article  Google Scholar 

  70. P. Zhang, S. Wang, Z. Lin, X. Yue, Y. Gao, S. Zhang, and H. Yang, Vacuum 211, 111939 (2023).

    Article  Google Scholar 

  71. C.X. Han, J.Q. Zhi, Z. Zeng, Y.S. Wang, B. Zhou, J. Gao, Y.X. Wu, Z.Y. He, X.M. Wang, and S.W. Yu, Appl. Surf. Sci. 623, 157108 (2023).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamed Kaypour.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaypour, H., Gholamipour, R., Khodabandeh, A. et al. Work Hardening and Kinetics Analysis of Al0.3MnCrCoFeNi High-Entropy Alloy. JOM 75, 4171–4181 (2023). https://doi.org/10.1007/s11837-023-06040-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-06040-w

Navigation