Skip to main content
Log in

Phase Evolution Between Ferromanganese Spinel and Gangue Components with Microwave Induction in Reducing Atmosphere

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The manganese silicate and calcium ferrite commonly generated during the treatment process of manganese ore results in difficult separation of manganese and iron. In this study, the migration behaviors of ferromanganese spinel and gangue compounds in a microwave field were explored by examining the corresponding phase and microstructural evolutions. Different from the traditional process, the interface reactions depend on the diffusion of Mn2+ and Fe2+ towards the surface of the gangue particles, owing to the microwave absorption ability of ferrite being better than that of calcium oxide. Compared with manganese, iron more easily combined with silicon oxide to form silicates. CaO induced the lattice transformation of the ferromanganese spinel to calcium manganese ferrite. The migration rate of manganese was faster than that of iron in the microwave field. The appropriate mass ratio (m(CaO)/m(SiO2)) reduced the negative impact of gangue components on the reduction process of ferromanganese.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. International Manganese Institute, 2008–2016. IMnI Annual Review. (2020) www.manganese.org, (Accessed 16 Nov 2022).

  2. B. Liu, Y. Zhang, M. Lu, Z. Su, G. Li, and T. Jiang, Miner. Eng. 131, 286 https://doi.org/10.1016/j.mineng.2018.11.016 (2019).

    Article  Google Scholar 

  3. T. Kodama, M. Ookubo, S. Miura, and Y. Kitayama, Mater. Res. Bull. 31, 1501 https://doi.org/10.1016/S0025-5408(96)00146-8 (1996).

    Article  Google Scholar 

  4. V.A.M. Brabers, J. Phys. Chem. Solids. 32, 2181 https://doi.org/10.1016/S0022-3697(71)80396-7 (1971).

    Article  Google Scholar 

  5. Z. Cheng, G. Zhu, and Y. Zhao, Hydrometallurgy 96, 176 https://doi.org/10.1016/j.hydromet.2008.08.004 (2009).

    Article  Google Scholar 

  6. P. Ding, Q. Liu, and W. Pang, Appl. Mech. Mater. 280, 4431 https://doi.org/10.4028/www.scientific.net/AMM.380-384.4431 (2013).

    Article  Google Scholar 

  7. Y. Gao, M. Olivas-Martinez, H.Y. Sohn, H.G. Kim, and C.W. Kim, Metall. Mater. Trans. B 43, 1465 https://doi.org/10.1007/s11663-012-9731-6 (2012).

    Article  Google Scholar 

  8. H. Zhang, J. Li, A. Xu, Q. Yang, D. He, and N. Tian, J. Iron Steel Res. Int. 21, 427 https://doi.org/10.1016/S1006-706X(14)60066-2 (2014).

    Article  Google Scholar 

  9. S.K. Tripathy, P.K. Banerjee, and N. Suresh, Int. J. Min. Met. Mater. 22, 661 https://doi.org/10.1007/s12613-015-1120-0 (2015).

    Article  Google Scholar 

  10. G. Senanayake, Hydrometallurgy 73, 215 https://doi.org/10.1016/j.hydromet.2003.10.010 (2004).

    Article  Google Scholar 

  11. B. Ghafarizadeh, F. Rashchi, and E. Vahidi, Miner. Eng. 24, 174 https://doi.org/10.1016/j.mineng.2010.11.003 (2011).

    Article  Google Scholar 

  12. W. Zhang and C.Y. Cheng, Hydrometallurgy 89, 137 https://doi.org/10.1016/j.hydromet.2007.08.010 (2007).

    Article  Google Scholar 

  13. C. Li, H. Zhong, S. Wang, J. Xue, F. Wu, and Z. Zhang, Trans. Nonferrous Met. Soc. China 25, 1677 https://doi.org/10.1016/s1003-6326(15)63772-4 (2015).

    Article  Google Scholar 

  14. Q. Ye, Z. Peng, G. Li, Y. Liu, M. Liu, L. Ye, L. Wang, M. Rao, T. Jiang, and B. Zhao, Powder Technol. 377, 20–28 https://doi.org/10.1016/j.powtec.2020.08.070 (2021).

    Article  Google Scholar 

  15. L. Gao, Z. Liu, M. Chu, R. Wang, Z. Wang, and C. Feng, Sep. Sci. Technol. 54, 195 https://doi.org/10.1080/01496395.2018.1504795 (2018).

    Article  Google Scholar 

  16. Z. Cai, Y. Feng, H. Li, X. Liu, and Z. Yang, JOM 64, 1296 (2012).

    Article  Google Scholar 

  17. W. Ye, Y. Li, L. Kong, M. Ren, and Q. Han, Trans. Nonferrous Met. Soc. China 23, 2083 https://doi.org/10.1016/s1003-6326(13)62838-1 (2013).

    Article  Google Scholar 

  18. N.J. Welham, Int. J. Miner. Process. 67, 187 https://doi.org/10.1016/S0301-7516(02)00045-5 (2002).

    Article  Google Scholar 

  19. B. Liu, Y. Zhang, Z. Su, M. Lu, Z. Peng, G. Li, and T. Jiang, Powder Technol. 313, 201–209 (2017).

    Article  Google Scholar 

  20. R. Kononov, O. Ostrovski, and S. Ganguly, Metall. Mater. Trans. B 39, 662 https://doi.org/10.1007/s11663-008-9191-1 (2008).

    Article  Google Scholar 

  21. X. Li, K. Tang, and M. Tangstad, Minerals 10, 97 https://doi.org/10.3390/min10020097 (2020).

    Article  Google Scholar 

  22. G. Akdogan and R.H. Eric, Metall. Mater. Trans. B 26, 13 https://doi.org/10.1007/BF02648973 (1995).

    Article  Google Scholar 

  23. J. Song, G. Zhu, Y. Zhao, and P. Zhang, Acta Metall. Sin. (English) 23, 223 (2010).

    Google Scholar 

  24. Y. Zhao, G. Zhu, and Z. Cheng, Hydrometallurgy 105, 96 https://doi.org/10.1016/j.hydromet.2010.08.004 (2010).

    Article  Google Scholar 

  25. H. Zhang, G. Zhu, H. Yan, T. Li, and Y. Zhao, Metall. Mater. Trans. B 44, 889 https://doi.org/10.1007/s11663-013-9835-7 (2013).

    Article  Google Scholar 

  26. Y. Zhang, M. Du, B. Liu, Z. Su, G. Li, and T. Jiang, Sep. Sci. Technol. 52, 1321 https://doi.org/10.1080/01496395.2017.1284864 (2017).

    Article  Google Scholar 

  27. G. Chen, L. Li, C. Tao, Z. Liu, N. Chen, and J. Peng, J. Alloys Compd. 657, 515 https://doi.org/10.1016/j.jallcom.2015.10.147 (2016).

    Article  Google Scholar 

  28. Q. Ye, Z. Peng, G. Li, J. Lee, Y. Liu, M. Liu, L. Wang, M. Rao, Y. Zhang, and T. Jiang, ACS Sustain. Chem. Eng. 7, 9515 https://doi.org/10.1021/acssuschemeng.9b00959 (2019).

    Article  Google Scholar 

  29. J. Chen, P. Tian, X. Song, N. Li, and J. Zhou, J. Iron Steel Res. Int. 17, 13 https://doi.org/10.1016/S1006-706X(10)60066-0 (2010).

    Article  Google Scholar 

  30. Q. Ye, Z. Peng, G. Li, Y. Liu, M. Liu, L. Ye, L. Wang, M. Rao, Y. Zhang, and T. Jiang, J. Clean. Prod. 286, 124919 https://doi.org/10.1016/j.jclepro.2020.124919 (2021).

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Natural Science Foundation of China (No. 52204282), and the college student innovations special projects of Wuhan University of Science and Technology (No. 22z118).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Ye.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, Q., Jiang, Y., Lv, J. et al. Phase Evolution Between Ferromanganese Spinel and Gangue Components with Microwave Induction in Reducing Atmosphere. JOM 75, 4341–4349 (2023). https://doi.org/10.1007/s11837-023-06039-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-06039-3

Navigation