Skip to main content
Log in

Effect of Additives on the Densification and Properties of Refractory Fabricated from Washed Residue of Secondary Aluminum Dross

  • Recycling End of Life Products Containing Aluminium
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The SAD was washed with the liquid-solid mass ratio of 10, leaching time of 8 h and leaching temperature of 90°C. AlN, NaCl and KCl were almost removed from SAD in the water leaching process. Refractories fabricated from washed residue of secondary aluminum dross have poor density and low mechanical properties, which limit their further utilization. TiO2 and ZrO2 were added to improve its properties. XRD and SEM were used to elucidate the improvement mechanism. The results show that TiO2 and ZrO2 can improve the density and mechanical properties of refractory. With the TiO2 addition dosage of 5 wt.% at the sintering temperature of 1600°C, the porosity of refractory was 5.4%, while the cold compressive strength can reach 121 MPa. With ZrO2 addition dosage of 7 wt.%, the porosity of refractory was 5.3%, and the cold compressive strength can reach 120 MPa. Ti4+ and Zr4+ can replace Al3+ to produce ion holes, which can promote the densification of refractory and strengthen their mechanical properties. In this work, a new strategy for strengthening the properties of refractory fabricated from secondary aluminum dross was proposed to meet the strict requirements, which was significant for the resource utilization of solid waste.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A. Srivastava and A. Meshram, Process Saf. Environ. Prot. 171, 38 (2023).

    Google Scholar 

  2. M. Shi, Y. Li, and J. Shi, Ceram. Int. 48, 7668 (2022).

    Google Scholar 

  3. J. Ju, Y. Feng, H. Li, C. Xu, Z. Xue, and B. Wang, Chem. Eng. J. 457, 141197 (2023).

    Google Scholar 

  4. C. Maheswari, V.G. Pratheep, A.S. Ramya, S. Shankar, K. Kumar Saxena, S. Kumar, and D. Kumar, Adv. Mater. Process. Technol. (2023). https://doi.org/10.1080/2374068X.2023.2168235.

    Article  Google Scholar 

  5. H. Nunes, O. Emadinia, R. Soares, M.F. Vieira, and A. Reis, Materials (Basel). 16, 895 (2023).

    Google Scholar 

  6. S. Lv, Y. Zhang, H. Ni, X. Wang, W. Wu, and C. Lu, Coatings 12, 730 (2022).

    Google Scholar 

  7. M. Shi, Y. Li, and P. Ni, Int. J. Environ. Sci. Technol. 19, 12069–12078 (2022).

    Google Scholar 

  8. T. Hashishin, Y. Kodera, T. Yamamoto, and M. Ohyanagi, Commun. Am. Ceram. Soc. 99, 496 (2004).

    Google Scholar 

  9. A. Benkhelif and M. Kolli, Waste Biomass Valoriz. 13, 2637 (2022).

    Google Scholar 

  10. Y. Zhang, Z. Guo, Z. Han, and X. Xiao, J. Alloys Compd. 735, 2597 (2018).

    Google Scholar 

  11. A. Li, H. Zhang, and H. Yang, Ceram. Int. 40, 12585 (2014).

    Google Scholar 

  12. E.M.M. Ewais, and N.H.A. Besisa, Mater. Des. 141, 110 (2018).

    Google Scholar 

  13. B. Sahin and C. Aksel, J. Eur. Ceram. Soc. 32, 49 (2012).

    Google Scholar 

  14. Y. Zou, H. Gu, A. Huang, M. Zhang, and M. Zhang, Ceram. Int. 43, 16495 (2017).

    Google Scholar 

  15. D. Wang, Y. Li, Y. Li, R. Li, and Y. Li, Adv. Mater. Res. 250–253, 588 (2011).

    Google Scholar 

  16. Y. Zou, A. Huang, R. Wang, L. Fu, H. Gu, and G. Li, Corros. Sci. 167, 108517 (2020).

    Google Scholar 

  17. Y. Zou, H. Gu, A. Huang, M. Zhang, and C. Ji, Ceram. Int. 40, 7023 (2014).

    Google Scholar 

  18. W. Yan, G. Wu, S. Ma, S. Schafföner, Y. Dai, Z. Chen, J. Qi, and N. Li, J. Eur. Ceram. Soc. 38, 4276 (2018).

    Google Scholar 

  19. P.G. Lampropoulou, C.G. Katagas, and I. Iliopoulos, Refract. Ind. Ceram. 53, 364 (2013).

    Google Scholar 

  20. W. Yan, X. Lin, J. Chen, N. Li, Y. Wei, and B. Han, J. Alloys Compd. 618, 287 (2015).

    Google Scholar 

  21. D. Chen, E.H. Jordan, and M. Gell, Scr. Mater. 59, 757 (2008).

    Google Scholar 

  22. B. Han, Y. Li, C. Guo, N. Li, and F. Chen, Ceram. Int. 33, 1563 (2007).

    Google Scholar 

  23. W. Peng, Z. Chen, W. Yan, S. Schafföner, G. Li, Y. Li, and C. Jia, Constr. Build. Mater. 291, 123388 (2021).

    Google Scholar 

  24. D. Mohapatra and D. Sarkar, J. Mater. Process. Technol. 189, 279 (2007).

    Google Scholar 

  25. H. Shafiee, A. Salehirad, and A. Samimi, Appl. Phys. A Mater. Sci. Process. 126, 1 (2020).

    Google Scholar 

  26. E.M.M. Ewais, A.A.M. El-Amir, D.H.A. Besisa, M. Esmat, and B.E.H. El-Anadouli, J. Alloys Compd. 691, 822 (2017).

    Google Scholar 

  27. C. Aksel, Adv. Mater. Res. 445, 530 (2012).

    Google Scholar 

  28. A.P. Luz, M.A.L. Braulio, A.G. Tomba Martinez, and V.C. Pandolfelli, Ceram. Int. 38, 1497 (2012).

    Google Scholar 

  29. L.B. Kong, T.S. Zhang, J. Ma, F. Boey, and R.F. Zhang, J. Alloys Compd. 372, 290 (2004).

    Google Scholar 

  30. W.J. Yuan, C.J. Deng, and H.X. Zhu, Mater. Chem. Phys. 162, 724 (2015).

    Google Scholar 

  31. Z. Quan, Z. Wang, X. Wang, H. Liu, and Y. Ma, J. Rare Earths 39, 1450 (2021).

    Google Scholar 

  32. A. Ghosh, S.K. Das, J.R. Biswas, H.S. Tripathi, and G. Banerjee, Ceram. Int. 26, 605 (2000).

    Google Scholar 

  33. M. Alo, R. Sarkar, and G. Bannerjee, J. Eur. Ceram. Soc. 20, 2133 (2000).

    Google Scholar 

  34. T. Kim, D. Kim, and S. Kang, J. Alloys Compd. 587, 594 (2014).

    Google Scholar 

  35. R. Naghizadeh and H.R. Rezaie, Ceram. Int. 37, 349 (2011).

    Google Scholar 

  36. R. Ceylantekin, and C. Aksel, Ceram. Int. 38, 1409 (2012).

    Google Scholar 

  37. C. Aksel and T. Aksoy, Ceram. Int. 38, 3673 (2012).

    Google Scholar 

  38. L. Yuan, B. Ma, Q. Zhu, Z. Wang, G. Li, and J. Yu, Ceram. Int. 43, 16258 (2017).

    Google Scholar 

  39. X. Lin, W. Yan, S. Ma, Q. Chen, N. Li, B. Han, and Y. Wei, Ceram. Int. 43, 4984 (2017).

    Google Scholar 

  40. M. Ilatovskaia, I. Saenko, G. Savinykh, and O. Fabrichnaya, J. Am. Ceram. Soc. 101, 5198 (2018).

    Google Scholar 

  41. S. Maitra, S. Das, and A. Sen, Ceram. Int. 33, 239 (2007).

    Google Scholar 

  42. M.A.L. Braulio, A.G.T. Martinez, A.P. Luz, C. Liebske, and V.C. Pandolfelli, Ceram. Int. 37, 1935 (2011).

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (Grant Nos. 51834004, 51774076 and 51904068).

Funding

National Natural Science Foundation of China, 51834004, Ying Li, 51774076, Ying Li, 51904068, Ying Li.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Shi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 166 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Shi, M. Effect of Additives on the Densification and Properties of Refractory Fabricated from Washed Residue of Secondary Aluminum Dross. JOM 75, 4662–4671 (2023). https://doi.org/10.1007/s11837-023-06024-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-06024-w

Navigation