Skip to main content

Advertisement

Log in

Superior Pitting Corrosion Resistance of Ultra-high Strength Low Alloy Steel Via Co-alloying Al and Cu

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Advanced high-strength low alloy (HSLA) steels with outstanding corrosion resistance are extensively applied in marine engineering. However, corrosion sensitivity increases with steel strength. In this study, we developed a yield strength of 890 MPa ultra-high-strength offshore steel with superior corrosion resistance by regulating co-precipitation nanoparticles through co-alloying Al and Cu. Dispersed nanoparticles reduce lattice mismatch with the matrix and decrease pitting sensitivity, promoting the formation of a more homogeneous and dense passive film in the early corrosion stage. Al in EH890 steel is more prone to react with oxygen, resulting in the formation of Al2O3, which increases the protection of the passivation film. As a result, the corrosion potential of EH890 steel is higher, and its corrosion current density is five times lower than that of EH690 steel in 3.5 wt.% NaCl solution. As the corrosion progresses, Cu and Al can also encourage the formation of α-FeOOH in the rust layer, providing better protection to the substrate material. The EH890 steel has improved pitting resistance and electrochemical durability. This strategy may be informative for the development of advanced HSLA steels with superior corrosion resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. F. Cai, Y. Huang, S. Xing, Y. Xu, X. Zhao, X. Wang, Z. Wang, and J.W. Ringsberg, Corros. Sci. 217, 111146 https://doi.org/10.1016/j.corsci.2023.111146 (2023).

    Article  Google Scholar 

  2. L. Li, S. Lou, and C. Wang, JOM 74, 3607 https://doi.org/10.1007/s11837-022-05281-5 (2022).

    Article  Google Scholar 

  3. J. Zhao and Z. Jiang, Prog. Mater Sci. 94, 174 https://doi.org/10.1016/j.pmatsci.2018.01.006 (2018).

    Article  Google Scholar 

  4. H. Ma, L. Chen, J. Zhao, Y. Huang, and X. Li, Mater. Sci. Eng. A 773, 138884 https://doi.org/10.1016/j.msea.2019.138884 (2020).

    Article  Google Scholar 

  5. V.G. Gavriljuk, B.D. Shanina, and H. Berns, Acta Mater. 56, 5071 https://doi.org/10.1016/j.actamat.2008.06.021 (2008).

    Article  Google Scholar 

  6. L. Kan, Q. Ye, Z. Wang, and T. Zhao, Mater. Sci. Eng. A 855, 143875 https://doi.org/10.1016/j.msea.2022.143875 (2022).

    Article  Google Scholar 

  7. Y. Wang, J. Wu, D. Zhang, E. Li, and L. Zhu, Bioelectrochemistry 141, 107884 https://doi.org/10.1016/j.bioelechem.2021.107884 (2021).

    Article  Google Scholar 

  8. C.S. Wang, C.Y. Tsai, C.G. Chao, and T.F. Liu, Mater. Trans. 48, 2973 https://doi.org/10.2320/matertrans.MER2007138 (2007).

    Article  Google Scholar 

  9. L.N. Xu, B. Wang, J.Y. Zhu, W. Li, and Z.Y. Zheng, Appl. Surf. Sci. 379, 39 https://doi.org/10.1016/j.apsusc.2016.04.049 (2016).

    Article  Google Scholar 

  10. C. Liu, R.I. Revilla, D.W. Zhang, Z.Y. Liu, A. Lutz, F. Zhang, T.L. Zhao, H.C. Ma, X.G. Li, and H. Terryn, Corros. Sci. 138, 96 https://doi.org/10.1016/j.corsci.2018.04.007 (2018).

    Article  Google Scholar 

  11. M. Kadowaki, I. Muto, Y. Sugawara, and N. Hara, Corros. Sci. 200, 110251 https://doi.org/10.1016/j.corsci.2022.110251 (2022).

    Article  Google Scholar 

  12. A.A. Becerra Araneda, M.A. Kappes, M.A. Rodríguez, and R.M. Carranza, Corros. Sci. 198, 110121 https://doi.org/10.1016/j.corsci.2022.110121 (2022).

    Article  Google Scholar 

  13. M. Nishimoto, I. Muto, Y. Sugawara, and N. Hara, ISIJ Int. 60, 196 https://doi.org/10.2355/isijinternational.ISIJINT-2019-408 (2019).

    Article  Google Scholar 

  14. M. Narimani, E. Hajjari, M. Eskandari, and J.A. Szpunar, J. Constr. Steel Res. 203, 107782 https://doi.org/10.1016/j.jcsr.2023.107782 (2023).

    Article  Google Scholar 

  15. J. Sun and K. Dilger, J. Mater. Res. Technol. 24, 557 https://doi.org/10.1016/j.jmrt.2023.03.016 (2023).

    Article  Google Scholar 

  16. Y. Tian, M.-C. Zhao, Y.-P. Zeng, X.-B. Shi, W. Yan, K. Yang, and T.-Y. Zeng, JOM 74, 2409 https://doi.org/10.1007/s11837-022-05202-6 (2022).

    Article  Google Scholar 

  17. D. Raabe, D. Ponge, O. Dmitrieva, and B. Sander, Scr. Mater. 60, 1141 https://doi.org/10.1016/j.scriptamat.2009.02.062 (2009).

    Article  Google Scholar 

  18. R.J. Shi, Z.D. Wang, L.J. Qiao, and X.L. Pang, J. Mater Sci. Technol. 35, 1940 https://doi.org/10.1016/j.jmst.2019.05.009 (2019).

    Article  Google Scholar 

  19. M.E. Fine, S. Vaynman, D. Isheim, Y.W. Chung, S.P. Bhat, and C.H. Hahin, Metall. Mater. Trans. A 41, 3318 https://doi.org/10.1007/s11661-010-0485-y (2010).

    Article  Google Scholar 

  20. S.G. Lee, S.S. Sohn, B. Kim, W.G. Kim, K.K. Um, and S. Lee, Mater. Sci. Eng. A 715, 332 https://doi.org/10.1016/j.msea.2018.01.021 (2018).

    Article  Google Scholar 

  21. Y.U. Heo, Y.K. Kim, J.S. Kim, and J.K. Kim, Acta Mater. 61, 519 https://doi.org/10.1016/j.actamat.2012.09.068 (2013).

    Article  Google Scholar 

  22. P.K. Ray, R.I. Ganguly, and A.K. Panda, Mater. Sci. Eng. A 346, 122 https://doi.org/10.1016/S0921-5093(02)00526-9 (2003).

    Article  Google Scholar 

  23. Z.B. Jiao, J.H. Luan, M.K. Miller, and C.T. Liu, Acta Mater. 97, 58 https://doi.org/10.1016/j.actamat.2015.06.063 (2015).

    Article  Google Scholar 

  24. M. Kapoor, D. Isheim, G. Ghosh, S. Vaynman, M.E. Fine, and Y.-W. Chung, Acta Mater. 73, 56 https://doi.org/10.1016/j.actamat.2014.03.051 (2014).

    Article  Google Scholar 

  25. H.Y. Wang, X.Y. Gao, S.M. Chen, Y.M. Li, Z.W. Wu, and H.P. Ren, J. Alloys Compd. 846, 156386 https://doi.org/10.1016/j.jallcom.2020.156386 (2020).

    Article  Google Scholar 

  26. S. Shojai, P. Schaumann, M. Braun, and S. Ehlers, Int. J. Fatigue 164, 107128 https://doi.org/10.1016/j.ijfatigue.2022.107128 (2022).

    Article  Google Scholar 

  27. M. Morcillo, I. Díaz, H. Cano, B. Chico, and D. de la Fuente, Constr. Build. Mater. 213, 723 https://doi.org/10.1016/j.conbuildmat.2019.03.334 (2019).

    Article  Google Scholar 

  28. Q.F. Xu, K.W. Gao, W.T. Lv, and X.L. Pang, Corros. Sci. 102, 114 https://doi.org/10.1016/j.corsci.2015.09.025 (2016).

    Article  Google Scholar 

  29. K.W. Chen, J.Z. Yan, N. Li, M.L. Luo, H.J. Shi, X. Zhu, Y. Liu, X.C. Zhao, and R. Zhang, J. Alloys Compd. 815, 152429 https://doi.org/10.1016/j.jallcom.2019.152429 (2020).

    Article  Google Scholar 

  30. N. Ochoa, E. Mardaras, R. González-Martínez, and G. Artola, Corros. Sci. 206, 110480 https://doi.org/10.1016/j.corsci.2022.110480 (2022).

    Article  Google Scholar 

  31. W.B. Dai, C. Zhang, L.J. Zhao, and C.Y. Li, Mater. Today Commun. 33, 104195 https://doi.org/10.1016/j.mtcomm.2022.104195 (2022).

    Article  Google Scholar 

  32. A. Weisenburger, G. Müller, A. Heinzel, A. Jianu, H. Muscher, and M. Kieser, Nucl. Eng. Des. 241, 1329 https://doi.org/10.1016/j.nucengdes.2010.08.005 (2011).

    Article  Google Scholar 

  33. B. Lv, Z.M. Zhang, Z.N. Yang, F.C. Zhang, C.L. Zheng, and Y.R. He, Mater. Lett. 173, 95 https://doi.org/10.1016/j.matlet.2016.02.148 (2016).

    Article  Google Scholar 

  34. A. Qaban, T. Mohmed, M.M. Quazi, and S. Naher, Mater. Today Commun. 25, 101362 https://doi.org/10.1016/j.mtcomm.2020.101362 (2020).

    Article  Google Scholar 

  35. R. Priya, S. Ningshen, M. Sakairi, and S. Ukai, J. Nucl. Mater. 534, 152120 https://doi.org/10.1016/j.jnucmat.2020.152120 (2020).

    Article  Google Scholar 

  36. L. Zhang, D. Niu, B. Wen, G. Peng, and Z. Sun, Constr. Build. Mater. 258, 119564 https://doi.org/10.1016/j.conbuildmat.2020.119564 (2020).

    Article  Google Scholar 

  37. H. Wang, H. Yu, S. Kondo, N. Okubo, and R. Kasada, Corros. Sci. 175, 108864 https://doi.org/10.1016/j.corsci.2020.108864 (2020).

    Article  Google Scholar 

  38. T. Kosaba, I. Muto, and Y. Sugawara, Corros. Sci. 179, 109145 https://doi.org/10.1016/j.corsci.2020.109145 (2021).

    Article  Google Scholar 

  39. X.X. Xu, T.Y. Zhang, W. Wu, S. Jiang, J.W. Yang, and Z.Y. Liu, Constr. Build. Mater. 279, 122341 https://doi.org/10.1016/j.conbuildmat.2021.122341 (2021).

    Article  Google Scholar 

  40. Y. Tang, B. Li, G.F. Zhang, P.F. Ji, X.Y. Zhang, M.Z. Ma, and R.P. Liu, Mater. Lett. 320, 132286 https://doi.org/10.1016/j.matlet.2022.132286 (2022).

    Article  Google Scholar 

  41. G. Han, Z.J. Xie, Z.Y. Li, B. Lei, C.J. Shang, and R.D.K. Misra, Mater. Des. 135, 92 https://doi.org/10.1016/j.matdes.2017.08.054 (2017).

    Article  Google Scholar 

  42. Z.M. Pan, H. Luo, Q.C. Zhao, H.X. Cheng, Y. Wei, X.F. Wang, B.W. Zhang, and X.G. Li, Corros. Sci. 207, 110570 https://doi.org/10.1016/j.corsci.2022.110570 (2022).

    Article  Google Scholar 

  43. H. Luo, Z.M. Li, A.M. Mingers, and D. Raabe, Corros. Sci. 134, 131 https://doi.org/10.1016/j.corsci.2018.02.031 (2018).

    Article  Google Scholar 

  44. J. Wang, L.Y. Sun, H.C. Ma, X.Q. Cheng, and X.G. Li, Mater. Sci. Eng. A 853, 143771 https://doi.org/10.1016/j.msea.2022.143771 (2022).

    Article  Google Scholar 

  45. Y.L. Zhou, X.J. Zhang, T. Jia, and Z.Y. Liu, J. Iron Steel Res. Int. 22, 496 https://doi.org/10.1016/S1006-706X(15)30032-7 (2015).

    Article  Google Scholar 

  46. X.X. Dong and Y.F. Shen, Mater. Sci. Eng. A 852, 143737 https://doi.org/10.1016/j.msea.2022.143737 (2022).

    Article  Google Scholar 

  47. R. Shi, Y. Tu, K. Gao, L. Qiao, and X. Pang, Corros. Commu. 5, 14 https://doi.org/10.1016/j.corcom.2021.11.006 (2022).

    Article  Google Scholar 

  48. W.H. Huang, H.W. Yen, and Y.L. Lee, J. Mater. Res. Technol. 8, 1476 https://doi.org/10.1016/j.jmrt.2018.11.002 (2019).

    Article  Google Scholar 

  49. G. Li, L. Wang, H. Wu, C. Liu, X. Wang, and Z. Cui, Corros. Sci. 174, 108815 https://doi.org/10.1016/j.corsci.2020.108815 (2020).

    Article  Google Scholar 

  50. Z.L. Li, K. Xiao, C.F. Dong, X.Q. Cheng, W. Xue, W. Yu, and J. Iron, Steel Res. Int. 26, 1315 https://doi.org/10.1007/s42243-019-00316-9 (2019).

    Article  Google Scholar 

  51. A.K. AceroGutiérrez, A.L. Pérez-Flores, J.G. Godínez-Salcedo, J. Moreno-Palmerin, and Á.D.J. Morales-Ramírez, Coatings 10, 385 https://doi.org/10.3390/coatings10040385 (2020).

    Article  Google Scholar 

  52. G.P. Singh, A.P. Moon, S. Sengupta, G. Deo, S. Sangal, and K. Mondal, J. Mater. Eng. Perform. 24, 1961 https://doi.org/10.1007/s11665-015-1448-7 (2015).

    Article  Google Scholar 

  53. F. Pastorek, K. Borko, S. Fintova, D. Kajanek, and B. Hadzima, Coatings 6, 46 https://doi.org/10.3390/coatings6040046 (2016).

    Article  Google Scholar 

  54. Q. Zhao, Int. J. Electrochem. Sci. 12, 7989 https://doi.org/10.20964/2017.09.35 (2017).

    Article  Google Scholar 

  55. R. Wang, S. Luo, M. Liu, and Y. Xue, Corros. Sci. 85, 270 https://doi.org/10.1016/j.corsci.2014.04.023 (2014).

    Article  Google Scholar 

  56. J. Soltis, Corros. Sci. 90, 5 https://doi.org/10.1016/j.corsci.2014.10.006 (2015).

    Article  Google Scholar 

  57. G.S. Frankel, J. Electrochem. Soc. 145, 2186 https://doi.org/10.1149/1.1838615 (2019).

    Article  Google Scholar 

  58. M.H. Sun, C.W. Du, Z.Y. Liu, C. Liu, X.G. Li, and Y.M. Wu, Corros. Sci. 186, 109427 https://doi.org/10.1016/j.corsci.2021.109427 (2021).

    Article  Google Scholar 

  59. J.F. Moulder, W.F. Stickle, W.M. Sobol and K.D. Bomben, (1992).

  60. Z.L. Xu, H. Zhang, X.J. Du, Y.Z. He, H. Luo, G.S. Song, L. Mao, T.W. Zhou, and L.L. Wang, Corros. Sci. 177, 108954 https://doi.org/10.1016/j.corsci.2020.108954 (2020).

    Article  Google Scholar 

  61. X.B. He, L.J. Wang, and K. Chou, J. Alloys Compd. 876, 160209 https://doi.org/10.1016/j.jallcom.2021.160209 (2021).

    Article  Google Scholar 

  62. C.T. Liu and J.K. Wu, Corros. Sci. 49, 2198 https://doi.org/10.1016/j.corsci.2006.10.032 (2007).

    Article  Google Scholar 

  63. T.E. Pou, O.J. Murphy, V. Young, J.O.M. Bockris, and L.L. Tongson, J. Electrochem. Soc. 131, 1243 https://doi.org/10.1149/1.2115795 (1984).

    Article  Google Scholar 

  64. Z. Zeng, M. Zhou, M. Esmaily, Y. Zhu, S. Choudhary, J.C. Griffith, J. Ma, Y. Hora, Y. Chen, A. Gullino, Q. Shi, H. Fujii, and N. Birbilis, Commu. Mater. https://doi.org/10.1038/s43246-022-00245-3 (2022).

    Article  Google Scholar 

Download references

Acknowledgements

The authors appreciate the support from the China National Key R&D Program of (2016YFB0300600).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-zhu He.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1045 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Che, Mj., Du, Xj., Yi, S. et al. Superior Pitting Corrosion Resistance of Ultra-high Strength Low Alloy Steel Via Co-alloying Al and Cu. JOM 75, 4287–4299 (2023). https://doi.org/10.1007/s11837-023-06021-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-06021-z

Navigation