Skip to main content
Log in

Leaching of Gold from an Oxide Gold Ore with Copper–Tartrate–Thiosulfate Solutions at Elevated Temperatures

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The leaching behavior of gold from an oxide gold ore using copper–tartrate–thiosulfate solutions has been investigated. Experimental parameters, including temperature, initial pH, and concentrations of copper tartrate and thiosulfate, were systematically studied. The capability of gold leaching using copper–tartrate–thiosulfate solutions is comparable to that of cyanidation, as well as the traditional copper–ammonia–thiosulfate leaching system at elevated temperatures. The kinetics are much faster than that of gold cyanidation, and thiosulfate consumption was greatly reduced in the presence of the tartrate. A considerable gold extraction of 90.42% was obtained under the optimized conditions of 0.1 mol/L CuSO4, 0.2 mol/L Na2L, 0.3 mol/L Na2S2O3, pH 11.0, and 75°C after 16 h of leaching. The process of gold dissolution in copper–tartrate–thiosulfate solutions may be controlled by product layer diffusion under the experimental conditions with an apparent activation energy of 35.474 kJ/mol. Increasing the temperature and the concentration of copper and thiosulfate while decreasing the content of tartrate can accelerate the rate of gold leaching. The system is quite unstable when the solution pH is less than 7.0, causing a noticeably lower content of the thiosulfate and copper–tartrate complex. At an initial pH of 9.0 or higher, however, faster kinetics can be achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. F. Habashi, CIM Bull. 80, 108 (1987).

    Google Scholar 

  2. G. Hilson, and A.J. Monhemius, J. Clean. Prod. 14, 1158 https://doi.org/10.1016/j.jclepro.2004.09.005 (2006).

    Article  Google Scholar 

  3. F. Korte, and F. Coulston, Ecotoxicol. Environ. Saf. 32, 96 https://doi.org/10.1006/eesa.1995.1091 (1995).

    Article  Google Scholar 

  4. M.G. Aylmore, Dev. Miner. Process. https://doi.org/10.1016/S0167-4528(05)15021-2 (2005).

    Article  Google Scholar 

  5. S. Ilyas, R.R. Srivastava, and H. Kim, J. Clean. Prod. 295, 126389 https://doi.org/10.1016/j.jhazmat.2021.125769 (2021).

    Article  Google Scholar 

  6. S. Ilyas, R.R. Srivastava, and H. Kim, J. Clean. Prod. 416, 125769 https://doi.org/10.1016/j.jclepro.2021.126389 (2021).

    Article  Google Scholar 

  7. G. Senanayake, Miner. Eng. 17, 785 https://doi.org/10.1016/j.mineng.2004.01.008 (2004).

    Article  Google Scholar 

  8. Z.W. Liu, X.Y. Guo, Q.H. Tian, and L. Zhang, J. Hazard Mater. 440, 129778 https://doi.org/10.1016/j.jhazmat.2022.129778 (2022).

    Article  Google Scholar 

  9. G. Senanayake, Miner. Eng. 18, 995 https://doi.org/10.1016/j.mineng.2005.01.006 (2005).

    Article  Google Scholar 

  10. X.M. Zhang, and G. Senanayake, Miner. Process. Extr. Metall. Rev. 37, 385 https://doi.org/10.1080/08827508.2016.1218872 (2016).

    Article  Google Scholar 

  11. M.G. Aylmore, and D.M. Muir, Miner. Eng. 14, 135 https://doi.org/10.1016/S0892-6875(00)00172-2 (2001).

    Article  Google Scholar 

  12. H.A. White, and S. Afr, J. Sci. 1, 211 (1905).

    Google Scholar 

  13. R.M.G.S. Berezowsky and V.B. Sefton, in 108th AIME Annual Meeting, New Orleans (108th AIME Annual Meeting, New Orleans: New Orleans, 1979), pp. 17–34.

  14. G. Senanayake, Hydrometallurgy 75, 55 https://doi.org/10.1016/j.hydromet.2004.06.004 (2004).

    Article  Google Scholar 

  15. X. Liu, B. Xu, Y. Yang, Q. Li, T. Jiang, and Y. He, Hydrometallurgy 178, 240 https://doi.org/10.1016/j.hydromet.2018.05.014 (2018).

    Article  Google Scholar 

  16. B. Xu, K. Li, Q. Li, Y. Yang, X. Liu, and T. Jiang, Sep. Purif. Technol. 213, 368 https://doi.org/10.1016/j.seppur.2018.12.064 (2019).

    Article  Google Scholar 

  17. Y. Zhang, B. Xu, M. Cui, Q. Li, X. Liu, T. Jiang, and X. Lyu, Electrochim. Acta 399, 139393 https://doi.org/10.1016/j.electacta.2021.139393 (2021).

    Article  Google Scholar 

  18. Y. Zhang, B. Xu, Y. Zheng, Q. Li, Y. Yang, X. Liu, T. Jiang, and X. Lyu, Miner. Eng. 171, 107079 https://doi.org/10.1016/j.mineng.2021.107079 (2021).

    Article  Google Scholar 

  19. H. Arima, T. Fujita, and W.T. Yen, Mater. Trans. 45, 516 https://doi.org/10.2320/matertrans.45.516 (2003).

    Article  Google Scholar 

  20. B. Xu, K. Li, Z. Dong, Y. Yang, Q. Li, X. Liu, and T. Jiang, J. Clean. Prod. 233, 1475 https://doi.org/10.1016/j.jclepro.2019.06.182 (2019).

    Article  Google Scholar 

  21. I. Chandra, and M.I. Jeffrey, Hydrometallurgy 77, 191 https://doi.org/10.1016/j.hydromet.2004.12.002 (2005).

    Article  Google Scholar 

  22. J.A. Heath, M.I. Jeffrey, H.G. Zhang, and J.A. Rumball, Miner. Eng. 21, 424 https://doi.org/10.1016/j.mineng.2007.12.006 (2008).

    Article  Google Scholar 

  23. J.L. Deutsch, and D.B. Dreisinger, Hydrometallurgy 137, 165 https://doi.org/10.1016/j.hydromet.2013.03.013 (2013).

    Article  Google Scholar 

  24. J.J. Eksteen, and E.A. Oraby, Miner. Eng. 70, 36 https://doi.org/10.1016/j.mineng.2014.08.020 (2015).

    Article  Google Scholar 

  25. D.M. Muir, and M.G. Aylmore, Miner. Process. Extr. Metall. 113, 2 https://doi.org/10.1179/037195504225004661 (2004).

    Article  Google Scholar 

  26. D.H. Brown, W.E. Smith, P. Fox, and R.D. Sturrock, Inorg. Chim. Acta 67, 27 https://doi.org/10.1016/S0020-1693(00)85035-5 (1982).

    Article  Google Scholar 

  27. D. Feng, and J.S.J. van Deventer, Miner. Eng. 24, 1022 https://doi.org/10.1016/j.mineng.2011.04.017 (2011).

    Article  Google Scholar 

  28. J. Wang, F. Xie, W. Wang, Y. Bai, Y. Fu, and Y. Chang, Miner. Eng. 155, 106476 https://doi.org/10.1016/j.mineng.2020.106476 (2020).

    Article  Google Scholar 

  29. J. Wang, F. Xie, W. Wang, Y. Bai, Y. Fu, and D. Dreisinger, Hydrometallurgy 191, 105204 https://doi.org/10.1016/j.hydromet.2019.105204 (2020).

    Article  Google Scholar 

  30. J. Chen, F. Xie, W. Wang, Y. Fu, and J. Wang, Miner. Eng. 183, 107605 https://doi.org/10.1016/j.mineng.2022.107605 (2022).

    Article  Google Scholar 

  31. J. Chen, F. Xie, W. Wang, Y. Fu, and J. Wang, Metals 12, 1152 https://doi.org/10.3390/met12071152 (2022).

    Article  Google Scholar 

  32. J. Wang, W. Wang, K. Dong, Y. Fu, and F. Xie, Miner. Eng. 137, 232–240 https://doi.org/10.1016/j.mineng.2019.04.013 (2019).

    Article  Google Scholar 

  33. S.R. La Brooy, H.G. Linge, and G.S. Walker, Miner. Eng. 7, 1213 https://doi.org/10.1016/0892-6875(94)90114-7 (1994).

    Article  Google Scholar 

  34. D. Feng, and J.S.J. van Deventer, Int. J. Miner. Process. 82, 138 https://doi.org/10.1016/j.minpro.2006.09.003 (2007).

    Article  Google Scholar 

  35. S. Zhang, and M.J. Nicol, Hydrometallurgy 103, 196 https://doi.org/10.1016/j.hydromet.2010.03.019 (2010).

    Article  Google Scholar 

  36. D. Dreisinger, and N. Abed, Hydrometallurgy 66, 37 https://doi.org/10.1016/S0304-386X(02)00079-8 (2002).

    Article  Google Scholar 

  37. T.G. Hörner, and P. Klüfers, Eur. J. Inorg. Chem. 12, 1798 https://doi.org/10.1002/ejic.201600168 (2016).

    Article  Google Scholar 

  38. D. Feng, and J.S.J. van Deventer, Miner. Eng. 23, 399 https://doi.org/10.1016/j.mineng.2009.11.016 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by the Fundamental Research Funds for Central Universities of China (N182502044). Special thanks are due to the instrumental or data analysis from the Analytical and Testing Center, Northeastern University.

Funding

Project (N182502044) supported by Fundamental Research Funds for Central Universities of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Xie.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Xie, F., Wang, W. et al. Leaching of Gold from an Oxide Gold Ore with Copper–Tartrate–Thiosulfate Solutions at Elevated Temperatures. JOM 75, 4308–4319 (2023). https://doi.org/10.1007/s11837-023-06020-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-06020-0

Navigation