Skip to main content
Log in

Investigation of Raster Pattern Spacing and Direction for Friction Stir Additive Manufacturing of Al-5083

  • Friction Stir Based Solid-State Additive Manufacturing
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Friction stir additive manufacturing (FSAM) is a sheet-lamination based additive manufacturing technique. In addition to the traditional factors that govern the friction stir process-structure-property relationship, the processing history is convoluted by the in-plane raster pattern and repeated thermal cycling from subsequent layers. This can lead to complex thermal gradients within the workpiece and reprocessing of material. This work aims to understand the impact of raster pattern spacing and direction on the microstructure and properties during friction stir additive manufacturing of Al-5083. Control of the raster spacing can lead to an increase in hardness of up to 18% from the base material and defect-free joining. These results are then directly demonstrated at the component-scale for FSAM of Al-5083.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. N. Tuncer and A. Bose, JOM 72, 3090–3111 https://doi.org/10.1007/s11837-020-04260-y (2020).

    Article  Google Scholar 

  2. M. Yuqing, K. Liming, H. Chunping, L. Fencheng, and L. Qiang, Int. J. Adv. Manuf. Technol. 83, 1637–1647 https://doi.org/10.1007/s00170-015-7695-9 (2016).

    Article  Google Scholar 

  3. R.S. Mishra and Z.Y. Ma, Mater. Sci. Eng. R. Rep. 50, 1–78 https://doi.org/10.1016/j.mser.2005.07.001 (2005).

    Article  Google Scholar 

  4. S. Palanivel, H. Sidhar, and R.S. Mishra, JOM 67, 616–621 https://doi.org/10.1007/s11837-014-1271-x (2015).

    Article  Google Scholar 

  5. S. Palanivel, P. Nelaturu, B. Glass, and R.S. Mishra, Mater. Des. 1980–2015(65), 934–952 https://doi.org/10.1016/j.matdes.2014.09.082 (2015).

    Article  Google Scholar 

  6. A. Silva-Magalhães, J. De Backer, J. Martin, and G. Bolmsjö, J. Manuf. Process. 39, 12–17 https://doi.org/10.1016/j.jmapro.2019.02.001 (2019).

    Article  Google Scholar 

  7. W. Woo, Z. Feng, X.L. Wang, D.W. Brown, B. Clausen, K. An, H. Choo, C.R. Hubbard, and S.A. David, Sci. Technol. Weld. Join. 12, 298–303 https://doi.org/10.1179/174329307X197548 (2007).

    Article  Google Scholar 

  8. R. Kumar, V. Pancholi, and R.P. Bharti, J. Mater. Process. Technol. 255, 470–476 https://doi.org/10.1016/j.jmatprotec.2017.12.034 (2018).

    Article  Google Scholar 

  9. A. Fehrenbacher, N.A. Duffie, N.J. Ferrier, F.E. Pfefferkorn, and M.R. Zinn, Int. J. Adv. Manuf. Technol. 71, 165–179 https://doi.org/10.1007/s00170-013-5364-4 (2014).

    Article  Google Scholar 

  10. K. Ross, G. Grant, J. Darsell, and D. Catalini, In Friction Stir Welding and Processing IX, ed. Y. Hovanski, R. Mishra, Y. Sato, P. Upadhyay and D. Yan (Springer International Publishing: Cham, 2017), pp 269-275.

  11. K. Kumar Jha, R. Kesharwani, and M. Imam, Mater. Today Proc. 56, 819–825 https://doi.org/10.1016/j.matpr.2022.02.262 (2022).

    Article  Google Scholar 

  12. J. Mohammadi, Y. Behnamian, A. Mostafaei, H. Izadi, T. Saeid, A.H. Kokabi, and A.P. Gerlich, Mater. Charact. 101, 189–207 https://doi.org/10.1016/j.matchar.2015.01.008 (2015).

    Article  Google Scholar 

  13. A.J. Barnes, H. Raman, A. Lowerson, and D. Edwards, Mater. Sci. Forum 735, 361–371 https://doi.org/10.4028/www.scientific.net/msf.735.361 (2012).

    Article  Google Scholar 

  14. Y. Ding, J.A. Muñiz-Lerma, M. Trask, S. Chou, A. Walker, and M. Brochu, MRS Bull. 41, 745–751 https://doi.org/10.1557/mrs.2016.214 (2016).

    Article  Google Scholar 

  15. M. Köhler, S. Fiebig, J. Hensel, and K. Dilger, Metals. https://doi.org/10.3390/met9050608 (2019).

    Article  Google Scholar 

  16. B.J. Phillips, C.J. Williamson, R.P. Kinser, J.B. Jordon, K.J. Doherty, and P.G. Allison, Materials. https://doi.org/10.3390/ma14216732 (2021).

    Article  Google Scholar 

  17. Y. Li, B. Yang, M. Zhang, H. Wang, W. Gong, R. Lai, Y. Li, and J. Teng, Corros. Sci. 213, 110972 https://doi.org/10.1016/j.corsci.2023.110972 (2023).

    Article  Google Scholar 

  18. J. Gandra, R.M. Miranda, and P. Vilaça, Mater. Sci. Eng. A 528, 5592–5599 https://doi.org/10.1016/j.msea.2011.03.105 (2011).

    Article  Google Scholar 

  19. Z. Zhang, Z.J. Tan, J.Y. Li, Y.F. Zu, W.W. Liu, and J.J. Sha, Int. J. Adv. Manuf. Technol. 104, 767–784 https://doi.org/10.1007/s00170-019-03917-6 (2019).

    Article  Google Scholar 

  20. K.J. Al-Fadhalah, A.I. Almazrouee, and A.S. Aloraier, Mater. Des. 53, 550–560 https://doi.org/10.1016/j.matdes.2013.07.062 (2014).

    Article  Google Scholar 

  21. M.V.N.V. Satyanarayana, K. Adepu, and K. Chauhan, Met. Mater. Int. 27, 3563–3573 https://doi.org/10.1007/s12540-020-00757-y (2021).

    Article  Google Scholar 

  22. C.B. Fuller, M.W. Mahoney, W.H. Bingel, M. Calabrese, and B. London, Mater. Sci. Forum 539–543, 3751–3756 https://doi.org/10.4028/www.scientific.net/MSF.539-543.3751 (2007).

    Article  Google Scholar 

  23. T. Jiang, T. Jiao, G. Dai, Z. Shen, Y. Guo, Z. Sun, and W. Li, J. Alloys Compd. 935, 1680–19 https://doi.org/10.1016/j.jallcom.2022.168019 (2023).

    Article  Google Scholar 

  24. Y.S. Sato, M. Urata, H. Kokawa, and K. Ikeda, Mater. Sci. Eng. A 354, 298–305 https://doi.org/10.1016/S0921-5093(03)00008-X (2003).

    Article  Google Scholar 

  25. W.J. Arbegast, Scr. Mater. 58, 372–376 https://doi.org/10.1016/j.scriptamat.2007.10.031 (2008).

    Article  Google Scholar 

  26. E. Salari, M. Jahazi, A. Khodabandeh, and H. Ghasemi-Nanesa, Mater. Des. 58, 381–389 https://doi.org/10.1016/j.matdes.2014.02.00 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

Pacific Northwest National Laboratory (PNNL) is operated by Battelle Memorial Institute for the DOE under Contract DEAC05-76RL01830. The authors are thankful for the financial support from the DEVCOM-Army Research Laboratory through the W911NF2020256 Grant. Usage of the microscopy facility at the Advanced Materials Engineering Research Institute (AMERI)-Florida International University is recognized for the research reported in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Garcia.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garcia, D., Wang, T., Sarvesha, R. et al. Investigation of Raster Pattern Spacing and Direction for Friction Stir Additive Manufacturing of Al-5083. JOM 75, 4223–4230 (2023). https://doi.org/10.1007/s11837-023-06017-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-06017-9

Navigation