Skip to main content
Log in

Copper Concentrate Blending and Melting Prediction Based on Particle Swarm Optimization Algorithm

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The purpose of smelting is to enrich most of the copper in the copper concentrate in the matte phase. The gangue, oxides and impurity elements were combined in the slag phase to completely separate the copper matte in the slag phase. In this paper, a mathematical model based on the optimization of copper concentrate cost and the content of impurity elements in the mixed copper concentrate is constructed for the copper concentrate dosing calculation. The model is solved using a particle swarm optimization algorithm to obtain the mixed copper concentrate blending results. Melting prediction of the blending results is carried out by optimizing the neural network via the particle swarm optimization algorithm to realize production prediction from the copper concentrate blending to the melting results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. F. Wang, J.F. Xiang, Y.F. Guo, and F.Q. Zheng, J. Iron Steel Res. 32, 89 (2020).

    Google Scholar 

  2. T. Peng, Sulphur Phosphorus Bulk Mater. Handl. Relat. Eng. 3, 44 (2014).

    Google Scholar 

  3. C.B. Zheng, H.L. Wang, and F.M. Zhang, Copp. Eng. 130, 74 (2014).

    Google Scholar 

  4. M.Y. Kou, Z. Zhang, W. Zeng, H. Zhou, and S.L. Wu, Iron Steel 57, 1 (2022).

    Google Scholar 

  5. J. Hu, M. Wu, L. Chen, W. Cao, and W. Pedrycz, J. Process Control 111, 97 https://doi.org/10.1016/j.jprocont.2022.02.002 (2022).

    Article  Google Scholar 

  6. W.S. Liu, and F.P. Li, Appl. Mech. Mater. 443, 657 https://doi.org/10.4028/www.scientific.net/AMM.443.657 (2013).

    Article  Google Scholar 

  7. K.K. Bai, A.J. Zhang, H.B. Zuo, J.J. Zuo, and Y.Z. Pan, Nonferrous Met. Sci. Eng. 10(3), 1 https://doi.org/10.13264/j.cnki.ysjskx.2019.03.001 (2019).

    Article  Google Scholar 

  8. L.H. Ke, X.Z. He, Y.C. Ye, and Y.Y. He, China Min. Mag. 26(01), 77 (2017).

    Google Scholar 

  9. D.H. Zhang, Modern Metall. 41(03), 78 (2013).

    Google Scholar 

  10. Z.G. Li, and Z.Q. Cui, J. Guangxi Univ. Nat. Sci. Ed. 38(05), 1230 https://doi.org/10.13624/j.cnki.issn.1001-7445.2013.05.010 (2013).

    Article  Google Scholar 

  11. N. Li, H.W. Ye, H. Wu, L.G. Wang, T. Lei, and Q.Z. Wang, Min. Res. Dev. 39(02), 16 (2019).

    Google Scholar 

  12. Q. Feng, Q. Li, Y.-Z. Wang, and W. Quan, Control Theory Appl. 2021, 1 (2021).

    Google Scholar 

  13. C.H. Yang, M. Xie, W.H. Gui, and X.B. Peng, Inf. Control 37, 28 (2008).

    Google Scholar 

  14. X.-H. Fan, Y. Li, and X.-L. Chen, Energy Procedia 16, 769 https://doi.org/10.1016/j.egypro.2012.01.124 (2012).

    Article  Google Scholar 

  15. S.B. Yang, T.J. Yang, and Y.C. Dong, Chin. J. Eng. 18(03), 220 (1996).

    Google Scholar 

  16. J.K. Song, World Nonferrous Met. 06, 11 (2021).

    Google Scholar 

  17. J.H. Ji, M.Y. Ma, and R.Q. Chang, J. Univ. Sci. Technol. Liaoning 44(02), 129 https://doi.org/10.13988/j.ustl.2021.02.009 (2021).

    Article  Google Scholar 

  18. C.Y. Liu, J.C. Ling, L.H. Kou, L.X. Qiu, and J.Q. Wu, Chin. J. Health Stat. 30(02), 173 (2014).

    Google Scholar 

  19. J. Hu, M. Wu, X. Chen, S. Du, W. Cao, and J. She, Inf. Sci. 483, 232 https://doi.org/10.1016/j.ins.2019.01.027 (2019).

    Article  Google Scholar 

  20. B. Zhang, J. Zhou, and M. Li, Appl. Therm. Eng. 131, 70 https://doi.org/10.1016/j.applthermaleng.2017.11.148 (2018).

    Article  Google Scholar 

  21. Q.H. Gu, Q.Q. Meng, C.W. Lu, and L. Ma, Min. Res. Dev. 39, 16 https://doi.org/10.13827/j.cnki.kyyk.2019.02.004 (2019).

    Article  Google Scholar 

  22. S.-L. Wu, D. Oliveira, Y.-M. Dai, and J. Xu, Int. J. Miner. Metall. Mater. 19, 217 https://doi.org/10.1007/s12613-012-0541-2 (2012).

    Article  Google Scholar 

  23. Y.K. He, Sci. Tech. Dev. Enterp. 13, 132 (2014).

    Google Scholar 

  24. S.-L. Wu, X.-B. Zhai, L.-X. Su, and X.-D. Ma, J. Iron. Steel Res. Int. 27, 755 https://doi.org/10.1007/s42243-019-00318-7 (2019).

    Article  Google Scholar 

  25. B.-J. Yan, J.-L. Zhang, H.-W. Guo, L.-K. Chen, and W. Li, Int. J. Min. Metall. Mater. 21, 741 https://doi.org/10.1007/s12613-014-0966-x (2014).

    Article  Google Scholar 

  26. Q.L. Xiang, M. Wu, B. Hou, and J. Xiang, J. Shandong Univ. (Eng. Sci.) 35(04), 43 (2005).

    Google Scholar 

  27. K.S. Barros, V.S. Vielmo, B.G. Moreno, G. Riveros, G. Cifuentes, and A.M. Bernardes, Minerals. https://doi.org/10.3390/min12020250 (2022).

    Article  Google Scholar 

  28. A. Anderson, V. Kumar, V.M. Rao, and J. Grogan, JOM 74, 1543 https://doi.org/10.1007/s11837-022-05169-4 (2022).

    Article  Google Scholar 

  29. Z.L. Ye, Q.K. Chen, H.P. Zhang, Y.F. Zhu, S.W. Zhou, B. Li, and Z. Shi, J. Kunming Univ. Sci. Technol. (Nat. Sci.) 47(01), 7 (2022).

    Google Scholar 

  30. A.F. Mulaba-Bafubiandi, Hyperfine Interact. 168, 923 https://doi.org/10.1007/s10751-006-9398-y (2006).

    Article  Google Scholar 

  31. X.H. Yu, and C.X. Sun, J. Henan Inst. Educ. (Nat. Sci. Ed.) 30(04), 21 (2021).

    Google Scholar 

  32. Z.H. Wang, D.Y. Gong, G.T. Li, and D.H. Zhang, J. Northeastern Univ. (Nat. Sci.) 39(12), 1717 (2017).

    Google Scholar 

  33. K. Han, and S.Y. Li, J. Railw. Sci. Eng. 17, 2216 https://doi.org/10.19713/j.cnki.43−1423/u.T20191095 (2020).

    Article  Google Scholar 

  34. R. Wang, S.W. Bai, and W.C. Dang, J. Taiyuan Univ. Sci. Technol. 42(06), 469 (2021).

    Google Scholar 

  35. S. Mirjalili, S.M. Mirjalili, and A. Lewis, Adv. Eng. Softw. 69, 46 https://doi.org/10.1016/j.advengsoft.2013.12.007 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51974142).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiwei Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 280 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, G., Zhou, S., Li, B. et al. Copper Concentrate Blending and Melting Prediction Based on Particle Swarm Optimization Algorithm. JOM 75, 4350–4360 (2023). https://doi.org/10.1007/s11837-023-06016-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-06016-w

Navigation