Skip to main content
Log in

Inorganic Capping Layers in RDL Technologies: Process Advantages and Reliability

  • Advanced Functional and Structural Thin Films and Coatings
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Atomic layer-deposited (ALD) inorganic films were processed on top of copper metal lines in a polymer-based redistribution layer (RDL). The primary objective was to develop capping layers thinner than 15 nm to prevent copper oxidation. Due to their uniformity and high density, ALD layers are established permeation barriers. Nonetheless, owing to the presence of polymers in the final product, a low deposition temperature is required, resulting in an increased defect density and a greater susceptibility to degradation by moisture. In this study, various inorganic cappings, based on Al\(_2\)O\(_3\), HfO\(_2\) and TiO\(_2\), deposited at 100 °C were integrated in an RDL stack. It is demonstrated that they impede the reaction of the polymer photo acid generator with copper, improving the lithography process, and ultimately allowing to print smaller critical dimensions. Additionally, capping layers built upon Al\(_2\)O\(_3\) or HfO\(_2\) are shown to fully block copper oxidation after reliability stress tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of Data and Code

The data that support the findings of this study are available within the article.

References

  1. W. W. Flack, R. Hsieh, H.-A. Nguyen, J. Slabbekoorn, S. Suhard, A. Miller, A. Hiro, and R. Ridremont, One micron damascene redistribution for fan-out wafer level packaging using a photosensitive dielectric material, in Electronics Packaging Technology Conference (EPTC), Singapore, 04-07 December (2018)

  2. C. H. Yu, L. J. Yen, C. Y. Hsieh, J. S. Hsieh, V. C. Y. Chang, C. H. Hsieh, C. S. Liu, C. T. Wang, K. Yee, and D. C. H. Yu, High performance, high density RDL for advanced packaging, in Electronic Components and Technology Conference (ECTC), San Diego, 29 May–01 June (2018)

  3. H. Kudo, T. Takano, M. Tanaka, H. Mawatari, D. Kitayama, T. Tai, T. Tsunoda, S. Kuramochi, Panel-based large-scale RDL interposer fabricated using 2-μm-pitch semi-additive process for Chiplet-based integration, in Electronic Components and Technology Conference (ECTC), San Diego, 31 May–03 June (2022)

  4. S. Jin, W. Do, J. Jeong, H. Cha, Y. Jeong, and J. Khim, Substrate silicon wafer integrated fan-out technology (S-SWIFT) packaging with fine pitch embedded trace RDL, in Electronic Components and Technology Conference (ECTC), San Diego, 31 May–03 June (2022)

  5. E. Chery, J. Slabbekoorn, N. Pinho, A. Miller, and E. Beyne, Advances in photosensitive polymer based damascene RDL processes: toward submicrometer pitches with more metal layers, in Electronic Components and Technology Conference (ECTC), San Diego, 01 June–04 July (2021)

  6. Lee, H. and J. Yu. 2008. J. Electron. Mater. 37: 1102.

    Article  Google Scholar 

  7. C.-L. Liang, Y.-S. Lin, C.-L. Kao, D. Tarng, S.-B. Wang, Y.-C. Hung, and K.-L. Lin, Electromigration failure study of a fine-pitch 2 μm/2 μm L/S Cu redistribution line embedded in polyimide for advanced high-density fan-out packaging, in Electronic Components and Technology Conference (ECTC), Orlando, 03–30 June (2020)

  8. Chery, E., F.F.C. Duval, M. Stucchi, J. Slabbekoorn, K. Croes, and E. Beyne. 2021. IEEE Trans. Compon. Packag. Manuf. Technol. 11: 1073.

    Article  Google Scholar 

  9. Chery, E. and K. Croes. 2023. JOM 75: 1874.

    Article  Google Scholar 

  10. Ronay, M. and P. Nordlander. 1987. Phys. Rev. B 35: 9403.

    Article  Google Scholar 

  11. Suzuki, S., Y. Ishikawa, M. Isshiki, and Y. Waseda. 1997. Mater. Trans. JIM 38: 1004.

    Article  Google Scholar 

  12. Schnable, G.L., W. Kern, and R.B. Comizzoli. 1975. J. Electrochem. Soc. 122: 1092.

    Article  Google Scholar 

  13. R. B. Comizzoli, L. K. White, W. Kern, G. L. Schnable, D. A. Peters, C. E. Tracy, and R. D. Vibronek, Corrosion of aluminum IC metallization with defective surface passivation layer, in International Reliability Physics Symposium, Las Vegas, 08–10 April (1980)

  14. Wada, T., M. Sugimoto, and T. Ajiki. 1989. J. Electrochem. Soc. 136: 732.

    Article  Google Scholar 

  15. Miyazaki, H., H. Kojima, and K. Hinode. 1997. J. Appl. Phys. 81: 7746.

    Article  Google Scholar 

  16. K. Prasad, X. Yuan, C. Li, and R. Kumar, Evaluation of diffusion barrier layers in Cu interconnects, in Conference on Optoelectronic and Microelectronic Materials and Devices, Sidney, 11–13 December (2002)

  17. K. Goto, H. Yuasa, A. Andatsu, and M. Matsuura, Film characterization of Cu diffusion barrier dielectrics for 90 nm and 65 nm technology node Cu interconnects, in International Interconnect Technology Conference, Burlingame, 04-04 June (2003)

  18. Vilmay, M., D. Roy, F. Volpi, and J.M. Chaix. 2008. Microelectron. Eng. 85: 2075.

    Article  Google Scholar 

  19. Zhao, L., M. Lofrano, K. Croes, E.V. Besien, Z. Tőkei, C.J. Wilson, R. Degraeve, T. Kauerauf, G.P. Beyer, and C. Claeys. 2011. Thin Solid Films 520: 662.

    Article  Google Scholar 

  20. Byrne, C., B. Brennan, A.P. McCoy, J. Bogan, A. Brady, and G. Hughes. 2016. ACS Appl. Mater. Interfaces 8: 2470.

    Article  Google Scholar 

  21. Ferrari, S., F. Perissinotti, E. Peron, L. Fumagalli, D. Natali, and M. Sampietro. 2007. Org. Electron. 8: 407.

    Article  Google Scholar 

  22. Carcia, P.F., R.S. McLean, Z.G. Li, M.H. Reilly, and W.J. Marshall. 2012. J. Vac. Sci. Technol. A 30: 041515.

    Article  Google Scholar 

  23. Kim, L.H., K. Kim, S. Park, Y.J. Jeong, H. Kim, D.S. Chung, S.H. Kim, and C.E. Park. 2014. ACS Appl. Mater. Interfaces 6: 6731.

    Article  Google Scholar 

  24. Maindron, T., T. Jullien, and A. André. 2016. J. Vac. Sci. Technol. A 34: 031513.

    Article  Google Scholar 

  25. Rückerl, A., R. Zeisel, M. Mandl, I. Costina, T. Schroeder, and M.H. Zoellner. 2017. J. Appl. Phys. 121: 025306.

    Article  Google Scholar 

  26. Li, Y., Y. Xiong, H. Yang, K. Cao, and R. Chen. 2020. J. Mater. Res. 35: 681.

    Article  Google Scholar 

  27. George, S.M. 2010. Chem. Rev. 110: 111.

    Article  Google Scholar 

  28. Cremers, V., R.L. Puurunen, and J. Dendooven. 2019. Appl. Phys. Rev. 6: 021302.

    Article  Google Scholar 

  29. Meyer, J., P. Görrn, F. Bertram, S. Hamwi, T. Winkler, H.-H. Johannes, T. Weimann, P. Hinze, T. Riedl, and W. Kowalsky. 2009. Adv. Mater. 21: 1845.

    Article  Google Scholar 

  30. Dameron, A.A., S.D. Davidson, B.B. Burton, P.F. Carcia, R.S. McLean, and S.M. George. 2008. J. Phys. Chem. C 112: 4573.

    Article  Google Scholar 

  31. Meyer, J., H. Schmidt, W. Kowalsky, T. Riedl, and A. Kahn. 2010. Appl. Phys. Lett. 96: 243308.

    Article  Google Scholar 

  32. Groner, M.D., F.H. Fabreguette, J.W. Elam, and S.M. George. 2004. Chem. Mater. 16: 639.

    Article  Google Scholar 

  33. Ghosh, A.P., L.J. Gerenser, C.M. Jarman, and J.E. Fornalik. 2005. Appl. Phys. Lett. 86: 223503.

    Article  Google Scholar 

  34. Carcia, P.F., R.S. McLean, and M.H. Reilly. 2010. Appl. Phys. Lett. 97: 221901.

    Article  Google Scholar 

  35. Klumbies, H., P. Schmidt, M. Hähnel, A. Singh, U. Schroeder, C. Richter, T. Mikolajick, C. Hoßbach, M. Albert, J.W. Bartha, K. Leo, and L. Müller-Meskamp. 2015. Org. Electron. 17: 138.

    Article  Google Scholar 

  36. Tseng, M.-H., H.-H. Yu, K.-Y. Chou, J.-H. Jou, K.-L. Lin, C.-C. Wang, and F.-Y. Tsai. 2016. Nanotechnology 27: 295706.

    Article  Google Scholar 

  37. Abdulagatov, A.I., Y. Yan, J.R. Cooper, Y. Zhang, Z.M. Gibbs, A.S. Cavanagh, R.G. Yang, Y.C. Lee, and S.M. George. 2011. ACS Appl. Mater. Interfaces 3: 4593.

    Article  Google Scholar 

  38. Bulusu, A., H. Kim, D. Samet, and S. Graham. 2013. J. Phys. D: Appl. Phys. 46: 084014.

    Article  Google Scholar 

  39. Franke, S., M. Baumkötter, C. Monka, S. Raabe, R. Caspary, H.-H. Johannes, W. Kowalsky, S. Beck, A. Pucci, and H. Gargouri. 2016. J. Vac. Sci. Technol. A 35: 01B117.

    Article  Google Scholar 

  40. Li, M., D. Gao, S. Li, Z. Zhou, J. Zou, H. Tao, L. Wang, M. Xu, and J. Peng. 2015. RSC Adv. 5: 104613.

    Article  Google Scholar 

  41. Automotive Electronics Council (2014)

  42. Kuper, A., H. Letaw, L. Slifkin, E. Sonder, and C.T. Tomizuka. 1954. Phys. Rev. 96: 1224.

    Article  Google Scholar 

  43. Moore, W.J. and B. Selikson. 1951. J. Chem. Phys. 19: 1539.

    Article  Google Scholar 

  44. M. Leskelä, M. Ritala, Angew. Chem., Int. Ed.42, 5548 (2003)

  45. Schubert, J.S., L. Kalantari, A. Lechner, A. Giesriegl, S.P. Nandan, P. Ayala, S. Kashiwaya, M. Sauer, A. Foelske, J. Rosen, P. Blaha, A. Cherevan, and D. Eder. 2021. J. Mater. Chem. A 9: 21958.

    Article  Google Scholar 

  46. Zhang, X., S. Li, W. Sun, L. Wang, J. Wang, and G. Liu. 2021. Corros. Sci. 183: 109352.

    Article  Google Scholar 

  47. Brady-Boyd, A., E. Chery, and S. Armini. 2022. J. Phys. Chem. Lett. 13: 8130.

    Article  Google Scholar 

  48. M. Toukhy, S. Mullen, M. Paunescu, C. Chen, S. Meyer, G. Pawlowski, Y. Murakami, and C. Hamel, Chemically amplified thick film i-line positive resist for electroplating and redistribution applications, in Advances in Resist Technology and Processing XXIII, vol 6153, San Jose, 29 March (2006)

  49. M. Toukhy, C. Chen, M. Paunescu, and G. Pawlowski, Performance comparison of negative resists for copper rerouting and other electroplating applications, in Advances in Resist Materials and Processing Technology XXV, vol 6923, San Jose, 26 March (2008)

  50. M. Katsurayama, H. Ito, H. Akimaru, T. Matsumoto, H. Sakakibara, K. Okamoto, and K. Hasegawa, Fine pitch plating resist for high density FO-WLP, in International Conference on Electronics Packaging (ICEP), Yamagata, pp. 19-22 (2017)

  51. R. Li, T. Matsumoto, T. Taniguchi, N. Nishiguchi, A. Hiro, H. Sakakibara, and K. Hasegawa, Novel plating photoresist development for advanced packaging, in International Conference on Electronics Packaging and iMAPS All Asia Conference (ICEP-IAAC), Mie, pp. 17–21 (2018)

  52. Malitson, I.H. 1962. J. Opt. Soc. Am. 52: 1377.

    Article  Google Scholar 

  53. Al-Kuhaili, M.F. 2004. Opt. Mater. 27: 383.

    Article  Google Scholar 

  54. Jolivet, A., C. Labbé, C. Frilay, O. Debieu, P. Marie, B. Horcholle, F. Lemarié, X. Portier, C. Grygiel, S. Duprey, W. Jadwisienczak, D. Ingram, M. Upadhyay, A. David, A. Fouchet, U. Lüders, and J. Cardin. 2023. Appl. Surf. Sci. 608: 155214.

    Article  Google Scholar 

  55. Larouche, S. and L. Martinu. 2008. Appl. Opt. 47: C219.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to the different imec teams involved in this study. Contributions from imec’s 3D IIAP program are deeply acknowledged. Special thanks for the numerous FIB cross-section requests handled by Dr. Olivier Richard and Ms. Chris Drijbooms. Sincere thanks should go to JSR Corporation and JSR Micro N.V. for providing the photosensitive polymer used in this study. The support of A. Hiro and H. Noda is deeply recognized.

Funding

The research leading to these results received partial funding from European Union’s Horizon 2020 research and innovation programme Marie Sklodowska-Curie under the under Grant Agreement No. 888163.

Author information

Authors and Affiliations

Authors

Contributions

EC, AB-B, RB, SA, JS and GS conceived and planned the experiments. EC, AB-B and RB carried out the experiments. AB-B, RB, NP and JS contributed to sample preparation. EC took the lead in writing the manuscript. All authors provided critical feedback and helped shape the research, analysis and manuscript.

Corresponding author

Correspondence to Emmanuel Chery.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chery, E., Brady-Boyd, A., Bhatia, R. et al. Inorganic Capping Layers in RDL Technologies: Process Advantages and Reliability. JOM 75, 5096–5102 (2023). https://doi.org/10.1007/s11837-023-06015-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-06015-x

Navigation