Skip to main content
Log in

Prediction Model of Nickel Converter Based on Neural Network Algorithm

  • Applications of Machine Learning in Materials Development and Additive Manufacturing
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Based on the vital position of the endpoint prediction of converting, and the fact that the determination of its endpoint still depends on workers’ experience, this paper proposes a prediction model based on BP neural networks and extreme learning machines. Five models are included: (1) back propagation (BP) neural network, (2) genetic algorithm-optimized back propagation neural network (GABP), (3) extreme learning machines (ELM), (4) genetic algorithm-optimized extreme learning machines (GAELM), and (5) particle swarm optimization of extreme learning machine (PSOELM). Based on the historical production data of the Jinchuan Group, these models have been applied for the prediction of air delivery volume and air delivery time of the converter. By comparing the root mean square error (RMSE), goodness of fit (R2) and hit rate within ± 10% relative error range of each model, GAELM has the highest accuracy with a 93.12% hit rate for air delivery volume and a 93.65% hit rate for air delivery time, indicating that GAELM can effectively predict the end of the converter blowing, and provide a good reference for endpoint control and the determination of the nickel converter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J. Liu, Z. Zou, S. Zhong, S. Zhang, and H. Zhang, Ionics 27, 1501–1509 https://doi.org/10.1007/s11581-021-03925-1 (2021).

    Article  Google Scholar 

  2. M.Q. Xue, Int. J. Surf. Sci. Eng. 4, 439–447 https://doi.org/10.1504/ijsurfse.2010.035146 (2010).

    Article  Google Scholar 

  3. S. Hwang, J. Lee, U.G. Hong, J.G. Seo, J.C. Jung, D.J. Koh, H. Lim, C. Byun, and I.K. Song, J. Ind. Eng. Chem. 17, 154–157 https://doi.org/10.1016/j.jiec.2010.12.015 (2011).

    Article  Google Scholar 

  4. K. Zhao, F. Gao, and Q.Y. Yang, J. Sustain. Metall. 8, 37–50 https://doi.org/10.1007/s40831-022-00501-3 (2022).

    Article  Google Scholar 

  5. A.O. Bol’shikh, O.I. Tsybin, M.A. Bol’shikh, O.G. Kuznetsova, and A.M. Levin, Russ. Metall. 2020, 718–722 https://doi.org/10.1134/s0036029520070034 (2020).

    Article  Google Scholar 

  6. L.R. Nelson, G.A. Georgalli, K.L. Hines, and R.J. Hundermark, Min. Process. Extract. Metall. 128, 134–159 https://doi.org/10.1080/25726641.2018.1506272 (2019).

    Article  Google Scholar 

  7. G.A. Bezuidenhout, J.J. Eksteen, G. Akdogan, B. Van Beek, W. Wendt, and W. Persson, Miner. Eng. 100, 132–143 https://doi.org/10.1016/j.mineng.2016.10.024 (2017).

    Article  Google Scholar 

  8. M. Han, and Y. Zhao, Expert Syst. Appl. 38, 14786–14798 https://doi.org/10.1016/j.eswa.2011.05.071 (2011).

    Article  Google Scholar 

  9. F. He, and L.Y. Zhang, J. Process Control 66, 51–58 https://doi.org/10.1016/j.jprocont.2018.03.005 (2018).

    Article  Google Scholar 

  10. C. Gao, M.G. Shen, X.P. Liu, L.D. Wang, and M.X. Chu, Complexity. https://doi.org/10.1155/2019/7408725 (2019).

    Article  Google Scholar 

  11. J. Weiwei, W. Xuefeng, and W. Xi, Comput. Intell. Neurosci. https://doi.org/10.1155/2022/5108677 (2022).

    Article  Google Scholar 

  12. B. Liu, and Y. Liu, Inorgan. Chem. Commun. https://doi.org/10.1016/j.inoche.2022.109846 (2022).

    Article  Google Scholar 

  13. G. Du, Z. Liu, and H. Lu, J. Comput. Appl. Math. https://doi.org/10.1016/j.cam.2020.113260 (2021).

    Article  Google Scholar 

  14. C. Pushuang, X. Liangyuan, T. Qiansheng, S. Lili, and L. Wei, Appl. Acoust. https://doi.org/10.1016/j.apacoust.2021.108411 (2022).

    Article  Google Scholar 

  15. S. Wang, L. Wang, and F. Jian, J. Phys. Conf. Ser. https://doi.org/10.1088/1742-6596/1345/5/052065 (2019).

    Article  Google Scholar 

  16. Z. Guobao, W. Yunhu, D. Qing, H. Yongming, M. Chunyan, X. Ruobing, and C. Lin, Int. J. Pattern Recognit. Artif. Intell. https://doi.org/10.1142/S0218001422510090 (2022).

    Article  Google Scholar 

  17. Z. Leina, B. Yujia, Z. Sishi, W. Yanpeng, K. Jie, and Z. Wenxuan, Sustainability. https://doi.org/10.3390/su142416361 (2022).

    Article  Google Scholar 

  18. V. Swati, K. Praveen, and T.M. Chandra, Commun. Soil Sci. Plant Anal. https://doi.org/10.1080/00103624.2022.2108828 (2023).

    Article  Google Scholar 

  19. C.W. Siu, R.M.I.F. bin, Y.S. Bahar, F.L. Hui and A.M. Zaid, Jaciii (2022). https://doi.org/10.1590/1980-5373-MR-2021-0439

Download references

Acknowledgements

The authors are grateful to the financial support for this project from the National High Technology Research and Development Program of China (No. 2022YFC3902001), the Opening Project of State Key Laboratory of Nickel and Cobalt Resources Comprehensive Utilization and Guangxi Innovation-Driven Development Project (No. Gui 2021AA12006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ailiang Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xing, J., Sun, F., Wang, L. et al. Prediction Model of Nickel Converter Based on Neural Network Algorithm. JOM 75, 4538–4549 (2023). https://doi.org/10.1007/s11837-023-05989-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-05989-y

Navigation