Skip to main content
Log in

Effect of Thermo–Processing on the Microstructure, Impact Abrasion Wear, and Corrosion Resistance Properties of TiC Reinforced Al-Added High-Mn Steel Matrix Composite

  • Composite Materials for Sustainable and Eco-Friendly Material Development and Application
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The present work aims to study the effect of thermo–mechanical processing on the microstructure, impact abrasion wear, and corrosion resistance properties of a Fe-17Mn-3Al (wt.%) steel matrix composite reinforced with 10 wt.% TiC, synthesized by the conventional melting and casting route. The high-manganese steel matrix composite (HMSMC) was homogenized at 1100°C for 1 h followed by forging with a 50% reduction in thickness. Then, the steel was subjected to warm rolling at 1100°C to achieve a 30% reduction in thickness followed by annealing at 800°C. In this work, the applied thermo–mechanical processing of the investigated HMSMC consists of forging, warm rolling, and annealing at 800°C. The XRD patterns of the homogenized and thermo–mechanically processed HMSMC show the presence of α-ferrite, γ-austenite, and TiC phases. In addition, the SEM micrographs corroborate the presence of ferrite in the inter-dendritic region, austenite in the dendritic region, large TiC particles in the inter-dendritic region, and small TiC particles in the dendritic region. Thermo–mechanical processing improves the density, hardness, impact abrasion wear (IAW) resistance, and corrosion resistance of the HMSMC. The improvement in properties is due to the thermo–mechanical processing which closes the pores and microvoids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A.K. Srivastava and K. Das, Mater. Sci. Eng. A 516, 1 https://doi.org/10.1016/j.msea.2009.04.041 (2009).

    Article  Google Scholar 

  2. R. Dalai, S. Das, and K. Das, Wear 420–421, 176 https://doi.org/10.1016/j.wear.2018.10.013 (2019).

    Article  Google Scholar 

  3. S. Mishra and R. Dalai, Mater. Today: Proc. 44, 2571 https://doi.org/10.1016/j.matpr.2020.12.602 (2021).

    Article  Google Scholar 

  4. H.Y. Wang, Q.C. Jiang, X.L. Li, and F. Zhao, J. Alloys Compd. 366, L9 https://doi.org/10.1016/S0925-8388(03)00737-0 (2004).

    Article  Google Scholar 

  5. A.K. Srivastava and K. Das, ISIJ Intern. 49, 1372 https://doi.org/10.2355/isijinternational.49.1372 (2009).

    Article  Google Scholar 

  6. A.K. Srivastava and K. Das, Tribo. Intern. 43, 944 https://doi.org/10.1016/j.triboint.2009.12.057 (2010).

    Article  Google Scholar 

  7. Y. Ma and X. Li, J. Iron Steel Res. Int. 19, 60 https://doi.org/10.1016/S1006-706X(12)60114-9 (2012).

    Article  Google Scholar 

  8. Z. Wang, T. Lin, X. He, H. Shao, J. Zheng, and X. Qu, J. Alloys Compd. 650, 918 https://doi.org/10.1016/j.jallcom.2015.08.047 (2015).

    Article  Google Scholar 

  9. S.W. Hu, Y.G. Zhao, Z. Wang, Y.G. Li, and Q.C. Jiang, Mater. Des. 44, 340 https://doi.org/10.1016/j.matdes.2012.07.063 (2013).

    Article  Google Scholar 

  10. W. Bleck, Int. J. Miner. Metall. Mater. 28, 782 https://doi.org/10.1007/s12613-020-2166-1 (2021).

    Article  Google Scholar 

  11. Z. Wang, T. Lin, X. He, H. Shao, Bo. Tang, and Qu. Xuanhui, Int. J. Refrac. Met. Hard Mater. 58, 14 https://doi.org/10.1016/j.ijrmhm.2016.03.013 (2016).

    Article  Google Scholar 

  12. G.S. Zhang, J.D. Xing, and Y.M. Gao, Wear 260, 728 https://doi.org/10.1016/j.wear.2005.04.010 (2006).

    Article  Google Scholar 

  13. H.J. Song and G.S. Zhang, Found. Tech. 26, 468 (2005).

    Google Scholar 

  14. E.G. Moghaddam, N. Karimzadeh, N. Varahram, and P. Davami, Mater. Sci. Eng.: A 585, 422 https://doi.org/10.1016/j.msea.2013.07.082 (2013).

    Article  Google Scholar 

  15. Y. Ma, X. Li, C. Wang, and L. Lu, J. Iron Steel Res. Int. 19, 60 https://doi.org/10.1016/S1006-706X(12)60114-9 (2012).

    Article  Google Scholar 

  16. R. Dalai, S. Das, and K. Das, Canad. Metal. Quart. 53, 317 https://doi.org/10.1179/1879139514Y.0000000140 (2014).

    Article  Google Scholar 

  17. Z.C. Luo, J.P. Ning, J. Wang, and K.H. Zheng, Wear 432–433, 1 https://doi.org/10.1016/j.wear.2019.202970 (2019).

    Article  Google Scholar 

  18. F. Qiu, H. Zhang, C. Li, Z. Wang, F. Chang, H. Yang, C. Li, X. Han, and Q. Jiang, Mater. Sci. Eng. A 819, 141485 https://doi.org/10.1016/j.msea.2021.141485 (2021).

    Article  Google Scholar 

  19. B. AlMangour, D. Grzesiak, and J.-M. Yang, Mater. Des. 96, 150 https://doi.org/10.1016/j.matdes.2016.02.022 (2016).

    Article  Google Scholar 

  20. B.K. Zuidema, D.K. Subramanyam, and W.C. Leslie, Metall. Mater. Trans. A 18, 1629 https://doi.org/10.1007/BF02646146 (1987).

    Article  Google Scholar 

  21. M. Abbasi, S. Kheirandish, Y. Kharrazi, and J. Hejazi, Mater. Sci. Eng.: A 513, 72 https://doi.org/10.1016/j.msea.2009.02.023 (2009).

    Article  Google Scholar 

  22. S. Su Sohn, S. Hong, J. Lee, B.C. Suh, S.K. Kim, B.J. Lee, N.J. Kim, and S. Lee, Acta Mater 100, 39 https://doi.org/10.1016/j.actamat.2015.08.027 (2015).

    Article  Google Scholar 

  23. M. Abbasi, S. Kheirandish, Y. Kharrazi, and J. Hejazi, Wear 268, 202 https://doi.org/10.1016/j.wear.2009.07.010 (2010).

    Article  Google Scholar 

  24. S. Chen, R. Rana, A. Halder, and R.K. Ray, Prog. Mater. Sci. 89, 345 https://doi.org/10.1016/j.pmatsci.2017.05.002 (2017).

    Article  Google Scholar 

  25. R. Dalai, S. Das, and K. Das, Int. J. Miner. Metall. Mater. 26, 64 https://doi.org/10.1007/s12613-019-1710-3 (2019).

    Article  Google Scholar 

  26. A.K. Srivastava, K. Das, and S. Kr Toor, Open J. Metal 5, 11 https://doi.org/10.4236/ojmetal.2015.52002 (2015).

    Article  Google Scholar 

  27. A.K. Srivastava, K. Das, S. Kr-Toor, and K. Sugimoto, Metallogr. Microstruct. Anal. 4, 371 https://doi.org/10.1007/s13632-015-0213-5 (2015).

    Article  Google Scholar 

  28. J. Bosch, U. Martin, W. Aperador, J.M. Bastidas, J. Ress, and D.M. Bastidas, Materials 14, 425 https://doi.org/10.3390/ma14020425 (2021).

    Article  Google Scholar 

  29. F.C. Ma, W.J. Lu, J.N. Qin, and D. Zhang, Mater. Trans. 47, 1322 https://doi.org/10.2320/matertrans.47.1322 (2006).

    Article  Google Scholar 

  30. R.N. Rai, A.K. Prasada Rao, G.L. Dutta, and M. Chakraborty, Mater Sci. Forum. 765, 418 https://doi.org/10.4028/www.scientific.net/MSF.765.418 (2013).

    Article  Google Scholar 

  31. Q. Wu, Y. Sun, C. Yang, F. Xue, and F. Song, Mater. Trans. 47, 2393 https://doi.org/10.2320/matertrans.47.2393 (2006).

    Article  Google Scholar 

  32. R. Thimmarayan and G. Thanigaiyarasu, Int. J. Adv. Manuf. Tech. 48, 625 https://doi.org/10.1007/s00170-009-2316-0 (2010).

    Article  Google Scholar 

  33. S. Mohapatra, D. Palai, B. Satpathy, S. Das, and K. Das, Mater. Today Commun. 34, 105282 https://doi.org/10.1016/j.mtcomm.2022.105282 (2023).

    Article  Google Scholar 

  34. Z. Liu and H. Fredriksson, Metall. Mater. Trans. A 28, 707 (1997).

    Article  Google Scholar 

  35. O. Kubaschevski and C.B. Alcock, Metallurgical thermochemistry, 5th edn. (Pergamon, Elmsford, NY, 1979).

    Google Scholar 

  36. G.K. Sigworth and J.F. Elliott, Metal Sci. 8, 298 https://doi.org/10.1179/msc.1974.8.1.298 (1974).

    Article  Google Scholar 

  37. X. Wang, X. Song, Y. Chen, Z. Wang, and L. Zhang, Int. J. Electrochem. Sci. 13, 6436 https://doi.org/10.20964/2018.07.12 (2018).

    Article  Google Scholar 

  38. J. Nie, F. Wang, Y. Chen, Q. Mao, H. Yang, Z. Song, X. Liu, and Y. Zhao, Microstructure and corrosion behavior of Al-TiB2/TiC composites processed by hot rolling. Results Phy. 14, 102471 https://doi.org/10.1016/j.rinp.2019.102471 (2019).

    Article  Google Scholar 

  39. M.B. Kannan, R.K.S. Raman, and S. Khoddam, Corr. Sci. 50, 2879 https://doi.org/10.1016/j.corsci.2008.07.024 (2008).

    Article  Google Scholar 

  40. Y.S. Zhang and X.M. Zhu, Corr. Sci. 41, 817 https://doi.org/10.1016/S0010-938X(99)00017-7 (1999).

    Article  Google Scholar 

  41. Y. Wang, G. Cheng, W. Wu, Q. Qiao, Y. Li, and X. Li, Appl. Sur. Sci. 349, 746 https://doi.org/10.1016/j.apsusc.2015.05.053 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Indian Institute of Technology, Kharagpur for providing the research facilities for the present work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karabi Das.

Ethics declarations

Conflict of interest

The author declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dalai, R., Mohapatra, S., Das, S. et al. Effect of Thermo–Processing on the Microstructure, Impact Abrasion Wear, and Corrosion Resistance Properties of TiC Reinforced Al-Added High-Mn Steel Matrix Composite. JOM 75, 5281–5289 (2023). https://doi.org/10.1007/s11837-023-05974-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-05974-5

Navigation