Skip to main content
Log in

Experimental Study of Low-Temperature Directed Energy Deposition Near Freezing Point Temperature 0°C

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

In this research, directed energy deposition (DED) experiments were conducted for the first time near freezing point temperature of 0°C. The objective was to demonstrate the on-site repair and remanufacturing capabilities using the DED process in cold environments like in the Northern Hemisphere in winter. The DED ambient and substrate temperatures were reduced to mimic the on-site DED process performed near freezing point temperature. Six single-track samples were printed at two different ambient temperatures (three samples printed at 20°C and another three samples printed at − 3°C) with 316L stainless steel powder. The molten pool evolution, sample geometries, internal crack, and hardness were investigated. It is found that at cold ambient temperatures, the DED process can be performed smoothly, and there was no obvious crack in the samples printed near the freezing point. The DED deposition at − 3°C had a larger melt pool zone and generated greater deposition height. In addition, at the temperature of − 3°C, the deposited samples had higher hardness values. Based on these experimental findings, it was concluded that the DED process can be performed near freezing point temperature, and the printed part is larger in size with better mechanical strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. G. Piscopo and L. Iuliano, Int. J. Adv. Manuf. Technol., 1 (2022).

  2. M.L. Dezaki, A. Serjouei, A. Zolfagharian, M. Fotouhi, M. Moradi, M. Ariffin and M. Bodaghi, Adv. Powder Mater., 100054 (2022).

  3. S. Tekumalla, R. Tosi, X. Tan and M. Seita, Addit. Manuf. Lett., 100029 (2022).

  4. D. Svetlizky, B. Zheng, A. Vyatskikh, M. Das, S. Bose, A. Bandyopadhyay, J.M. Schoenung, E.J. Lavernia and N. Eliaz, Mater. Sci. Eng.: A, 142967 (2022).

  5. S.J. Wolff, S. Lin, E.J. Faierson, W.K. Liu, G.J. Wagner, and J. Cao, Acta Mater. 132, 106 (2017).

    Article  Google Scholar 

  6. J.H.L. Pang, J. Kaminski, and H. Pepin, Addit. Manuf. 25, 286 (2019).

    Google Scholar 

  7. A.K. Singh, Y. Mundada, P. Bajaj, M.B. Wilms, J.P. Patil, S.K. Mishra, E.A. Jägle, and A. Arora, Int. J. Heat Mass Transf. 186, 122492 (2022).

    Article  Google Scholar 

  8. H. Naesstroem, F. Brueckner, and A.F. Kaplan, J. Manuf. Process. 73, 660 (2022).

    Article  Google Scholar 

  9. A. Iams, M. Gao, A. Shetty, and T. Palmer, Powder Technol. 396, 316 (2022).

    Article  Google Scholar 

  10. W. Li, X. Zhang and F. Liou, Int. J. Adv. Manuf. Technol., 1 (2018).

  11. X. Zhang, W. Li, and F. Liou, Opt. Laser Technol. 148, 107738 (2022).

    Article  Google Scholar 

  12. G. Zhao, G. Ma, J. Feng, and W. Xiao, Int. J. Adv. Manuf. Technol. 96, 3149 (2018).

    Article  Google Scholar 

  13. J. Jiang, and Y. Ma, Micromachines 11, 633 (2020).

    Article  Google Scholar 

  14. W. Zhang, F. Liu, F. Liu, C. Huang, H. Zheng, Q. Zhang, Y. Zheng, and J. Gao, J. Alloy. Compd. 905, 164179 (2022).

    Article  Google Scholar 

  15. W. Li, and M. Soshi, Int. J. Adv. Manuf. Technol. 103, 3279 (2019).

    Article  Google Scholar 

  16. N.A. Kistler, D.J. Corbin, A.R. Nassar, E.W. Reutzel, and A.M. Beese, J. Mater. Process. Technol. 264, 172 (2019).

    Article  Google Scholar 

  17. W. Li, L. Yan, X. Chen, J. Zhang, X. Zhang, and F. Liou, J. Mater. Process. Technol. 255, 96 (2018).

    Article  Google Scholar 

  18. A. Saboori, D. Gallo, S. Biamino, P. Fino, and M. Lombardi, Appl. Sci. 7, 883 (2017).

    Article  Google Scholar 

  19. Y. Yang, Y. Gong, C. Li, X. Wen, and J. Sun, J. Mater. Process. Technol. 291, 117023 (2021).

    Article  Google Scholar 

  20. N. Abd Aziz, N.A.A. Adnan, D. Abd Wahab, and A.H. Azman, J. Clean. Prod. 296, 126401 (2021).

    Article  Google Scholar 

  21. M. Kumaran, V. Senthilkumar, C.J. Panicke, and R. Shishir, Mater. Today Proc. 47, 4475 (2021).

    Article  Google Scholar 

  22. S. Lhabitant, F. Badouaille, D. Remache, G. Cohen, and A. Toufine, In IOP Conference Series: Materials Science and Engineering, (IOP Publishing: 2021), p 012022.

  23. A. Shrivastava, S. Rao, B. Nagesha, S. Barad, and T. Suresh, Mater. Today: Proc. 45, 4893 (2021).

    Article  Google Scholar 

  24. X. Zhang, T. Pan, W. Li, and F. Liou, JOM 71, 946 (2019).

    Article  Google Scholar 

  25. X. Zhang, W. Cui, W. Li, and F. Liou, Int. J. Adv. Manuf. Technol. 100, 1607 (2019).

    Article  Google Scholar 

  26. L. Li, X. Zhang, T. Pan, and F. Liou, Int. J. Adv. Manuf. Technol. 119, 719 (2022).

    Article  Google Scholar 

  27. W. Li, and M. Soshi, Mater. Lett. 251, 8 (2019).

    Article  Google Scholar 

  28. T.P. Vessel, Mech. Eng., 99 (1989).

  29. A.E. Sheet, (1998).

  30. "6 FAQ’s about Cold Weather Welding", https://www.wileymetal.com/6-faqs-about-cold-weather-welding/#:~:text=Codes%20for%20piping%20and%20pressure,F%20(10%C2%B0C.).

  31. W. Meng, X. Yin, J. Fang, L. Guo, Q. Ma, and Z. Li, Opt. Laser Technol. 109, 168 (2019).

    Article  Google Scholar 

  32. https://trc.nist.gov/cryogenics/materials/316Stainless/316Stainless_rev.htm.

  33. A.I.E.-B.e. https://www.astm.org/e0140-12br19e01.html, (2019).

  34. A.I. https://www.astm.org/e0018-17.html, (2017).

  35. A. Godon, J. Creus, S. Cohendoz, E. Conforto, X. Feaugas, P. Girault, and C. Savall, Scripta Mater. 62, 403 (2010).

    Article  Google Scholar 

  36. S. Lefebvre, B. Devincre, and T. Hoc, Mater. Sci. Eng., A 400, 150 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Li.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Zhang, R., Kishore, M.N. et al. Experimental Study of Low-Temperature Directed Energy Deposition Near Freezing Point Temperature 0°C. JOM 75, 3781–3787 (2023). https://doi.org/10.1007/s11837-023-05958-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-05958-5

Navigation