Skip to main content
Log in

Cooling Rate Effect on Microstructures and Mechanical Properties of Ti-7Al-1Mo-0.5V-0.1C

  • Phase Stability in Extreme Environments
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The Ti-7Al-1Mo-0.5V-0.1C alloy exhibits low density and good mechanical properties, and has potential applications in aerospace industries. The microstructure features of titanium alloys, such as the morphology and volume fraction of the primary α phase (αp) and the precipitation of the secondary α phase (αs), are sensitive to heat treatment parameters, especially the cooling rate from the two-phase region. In this work, we have characterized the precipitation of the secondary α phase and ordered α2 phase in Ti-7Al-1Mo-0.5V-0.1C alloy under water quenching, air cooling, and furnace cooling, and have investigated their effects on the mechanical properties of the Ti-7Al-1Mo-0.5V-0.1C alloy. The results show that the secondary α phase is significantly coarsened in the air-cooled alloy and leads to an increase in the strength but decrease in the ductility of the alloy, while the equiaxed microstructure generated in the furnace-cooled alloy, with no precipitation of the secondary α phase and an increase in size of the ordered α2 precipitation phase within the primary α phase, contributes to a further increase in ductility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. D. Banerjee, and J.C. Williams, Acta Mater. 61, 844–879 https://doi.org/10.1016/j.actamat.2012.10.043 (2013).

    Article  Google Scholar 

  2. S. Huang, J. Zhang, Y. Ma, S. Zhang, S.S. Youssef, M. Qi, H. Wang, J. Qiu, D. Xu, J. Lei, and R. Yang, J. Alloys Compd. 791, 575–585 https://doi.org/10.1016/j.jallcom.2019.03.332 (2019).

    Article  Google Scholar 

  3. L.C. Zhang, and L.Y. Chen, Adv. Eng. Mater. 21, 1801215 https://doi.org/10.1002/adem.201801215 (2019).

    Article  Google Scholar 

  4. R. Sabban, S. Bahl, K. Chatterjee, and S. Suwas, Acta Mater. 162, 239–254 https://doi.org/10.1016/j.actamat.2018.09.064 (2019).

    Article  Google Scholar 

  5. D. Zhang, L. Wang, H. Zhang, A. Maldar, G. Zhu, W. Chen, J.-S. Park, J. Wang, and X. Zeng, Acta Mater. 189, 93–104 https://doi.org/10.1016/j.actamat.2020.03.003 (2020).

    Article  Google Scholar 

  6. Z. Tarzimoghadam, S. Sandlöbes, K.G. Pradeep, and D. Raabe, Acta Mater. 97, 291–304 https://doi.org/10.1016/j.actamat.2015.06.043 (2015).

    Article  Google Scholar 

  7. F.J. Gil, M.P. Ginebra, J.M. Manero, and J.A. Planell, J. Alloys Compd. 329, 142–152 https://doi.org/10.1016/S0925-8388(01)01571-7 (2001).

    Article  Google Scholar 

  8. R. Jia, W. Zeng, Z. Zhao, S. Wang, J. Xu, and Q. Wang, Mater. Des. 223, 111191 https://doi.org/10.1016/j.matdes.2022.111191 (2022).

    Article  Google Scholar 

  9. S.L. Semiatin, S.L. Knisley, P.N. Fagin, D.R. Barker, and F. Zhang, Metall Mater. Trans. 34, 2377–2386 https://doi.org/10.1007/s11661-003-0300-0 (2003).

    Article  Google Scholar 

  10. S.L. Semiatin, T.M. Lehner, J.D. Miller, R.D. Doherty, and D.U. Furrer, Metall Mater. Trans. 38, 910–921 https://doi.org/10.1007/s11661-007-9088-7 (2007).

    Article  Google Scholar 

  11. X. Gao, W. Zeng, S. Zhang, and Q. Wang, Acta Mater. 122, 298–309 https://doi.org/10.1016/j.actamat.2016.10.012 (2017).

    Article  Google Scholar 

  12. X. Shi, W. Zeng, Y. Long, and Y. Zhu, J. Alloys Compd. 727, 555–564 https://doi.org/10.1016/j.jallcom.2017.08.165 (2017).

    Article  Google Scholar 

  13. Y.C. Lin, Y. Tang, X.-Y. Zhang, C. Chen, H. Yang, and K.-C. Zhou, Vacuum 159, 191–199 https://doi.org/10.1016/j.vacuum.2018.10.035 (2019).

    Article  Google Scholar 

  14. H. Jiang, F. Jiang, B. Xie, B. Wang, B. Xu, X. Hu, L. Xu, Z. He, H. Zhang, Y. Wu, and M. Sun, Mater. Charact. 195, 112529 https://doi.org/10.1016/j.matchar.2022.112529 (2023).

    Article  Google Scholar 

  15. K. Yue, J. Liu, S. Zhu, L. Wang, Q. Wang, and R. Yang, Materialia 1, 128–138 https://doi.org/10.1016/j.mtla.2018.06.005 (2018).

    Article  Google Scholar 

  16. Z. Huang, H. Xiao, J. Yu, H. Zhang, H. Huang, K. Yu, and R. Zhou, J. Mater. Res. Technol. 18, 4859–4870 https://doi.org/10.1016/j.jmrt.2022.04.149 (2022).

    Article  Google Scholar 

  17. T. Mahender, M.R. Anantha Padmanaban, I. Balasundar, and T. Raghu, Mater. Sci. Eng. A. 827, 142052 https://doi.org/10.1016/j.msea.2021.142052 (2021).

    Article  Google Scholar 

  18. B.D. Venkatesh, D.L. Chen, and S.D. Bhole, Mater. Sci. Eng. A 506, 117–124 https://doi.org/10.1016/j.msea.2008.11.018 (2009).

    Article  Google Scholar 

  19. A. Radecka, J. Coakley, V.A. Vorontsov, T.L. Martin, P.A.J. Bagot, M.P. Moody, D. Rugg, and D. Dye, Scr. Mater. 117, 81–85 https://doi.org/10.1016/j.scriptamat.2016.02.015 (2016).

    Article  Google Scholar 

  20. S.S. Youssef, X. Zheng, S. Huang, Y. Ma, M. Qi, S. Zheng, J. Lei, and R. Yang, J. Alloys Compd. 871, 159577 https://doi.org/10.1016/j.jallcom.2021.159577 (2021).

    Article  Google Scholar 

  21. A.J. Huang, G.P. Li, Y.L. Hao, and R. Yang, Acta Mater. 51, 4939–4952 https://doi.org/10.1016/S1359-6454(03)00352-5 (2003).

    Article  Google Scholar 

  22. X. Zheng, S. Zheng, J. Wang, Y. Ma, H. Wang, Y. Zhou, X. Shao, B. Zhang, J. Lei, R. Yang, and X. Ma, Acta Mater. 181, 479–490 https://doi.org/10.1016/j.actamat.2019.10.010 (2019).

    Article  Google Scholar 

  23. H. Zhang, C. Wang, G. Zhou, S. Zhang, and L. Chen, J. Mater. Res. Technol. 18, 5257–5266 https://doi.org/10.1016/j.jmrt.2022.05.019 (2022).

    Article  Google Scholar 

  24. X. Zhu, Q. Fan, D. Wang, H. Gong, Y. Gao, H. Yu, X. Cheng, Z. Zhou, and L. Yang, Prog. Nat. Sci. Mater. Int. 31, 742–748 https://doi.org/10.1016/j.pnsc.2021.09.001 (2021).

    Article  Google Scholar 

  25. G.E. Dieter, and D. Bacon, Mechanical metallurgy (McGraw-hill, New York, 1976).

    Google Scholar 

  26. L. Wang, Q. Fan, X. Zhu, D. Wang, K. Chen, H. Gong, Y. Qian, Y. Peng, and L. Yang, J. Alloys Compd. 851, 156847 https://doi.org/10.1016/j.jallcom.2020.156847 (2021).

    Article  Google Scholar 

  27. S. Zhu, H. Yang, L.G. Guo, and X.G. Fan, Mater. Charact. 70, 101–110 https://doi.org/10.1016/j.matchar.2012.05.009 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the financial support from the Natural Science Foundation of China (Grant Nos. 51901102 and 52101005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qunbo Fan or Shun Xu.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ying, J., Fan, Q., Xu, S. et al. Cooling Rate Effect on Microstructures and Mechanical Properties of Ti-7Al-1Mo-0.5V-0.1C. JOM 75, 4644–4652 (2023). https://doi.org/10.1007/s11837-023-05949-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-05949-6

Navigation