Skip to main content
Log in

Vacuum Brazing of NIMONIC 105 Superalloy Using W-Rich BNi-10 and Conventional BNi-2 Fillers

  • The Role of Refractory Elements in Advanced Alloys and Ceramics for Extreme Environments
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Two different filler metals were used for vacuum brazing of NIMONIC 105 similar joints. At first, the specimen was brazed using BNi-2 as filler. The optimized parameters were brazing time and temperature of 7 min and 1200°C, respectively. Then, the innovative approach of adding tungsten to the braze filler was adopted to improve the metallurgical properties of the joints. The formation of intermetallic and eutectic phases was investigated by back-scattered electron (BSE) imaging, energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), and hardness testing. The investigation confirmed that, unlike the bulky brittle phases (SiCr3, Ni2B, Cr2B, and NiSi), and network or eutectic phases found in the specimen brazed using BNi-2 as filler, a W-rich filler (BNi-10) creates fine precipitates (CrSi2, Cr2B) that have minimal impact on the properties of the joint. Microhardness evaluation indicated that using the BNi-10 filler resulted in more uniform hardness profiles across the joint. The shear strength of brazed joints increased significantly from 81.8 MPa to 88.1 MPa with the addition of tungsten. Lack of Ni2B and NiSi formation resulted in a high ductility of 17.1% in the specimen brazed via BNi-10 when compared with 10.95% in the specimen brazed via BNi-2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Y. Zhua, Z. Zhua, Z. Xianga, Z. Yinb, Z. Wua, and W. Yana, J. Alloys Compd. 476, 341 https://doi.org/10.1016/j.jallcom.2008.08.062 (2009).

    Article  Google Scholar 

  2. R. Barazandeh, M.A. Mofid, M. Jafarzadegan, and H. Nasiri Vatan, Weld. World. https://doi.org/10.1007/s40194-022-01460-9 (2023).

    Article  Google Scholar 

  3. R.C. Reed, The superalloys—fundamentals and applications (Cambridge University Press, New York, 2006).

    Book  Google Scholar 

  4. M. Naalchian, M. Kasiri-Asgarani, M. Shamanian, R. Bakhtiari, and H.R. Bakhsheshi-Rad, J. Mater. Res. Technol. 13, 2144 https://doi.org/10.1016/j.jmrt.2021.05.069 (2021).

    Article  Google Scholar 

  5. F. Arhami, S.E. Mirsalehi, and A. Sadeghian, J. Mater. Process. Technol. 265, 219 https://doi.org/10.1016/j.jmatprotec.2018.10.021 (2019).

    Article  Google Scholar 

  6. W. Li, T. Jin, X. Sun, Y. Guo, H. Guan, and Z. Hu, Scr. Mater. 48(9), 1283 (2003).

    Article  Google Scholar 

  7. J. Liu, T. Jin, N. Zhao, Z. Wang, X.F. Sun, H.R. Guan, and Z.Q. Hu, Mater. Sci. Forum 546, 1245 (2007).

    Article  Google Scholar 

  8. M. Khakian, S. Nategh, and S. Mirdamadi, J. Alloys Compd. 653, 386 https://doi.org/10.1016/j.jallcom.2015.09.044 (2015).

    Article  Google Scholar 

  9. N. Wu, Y.J. Li, and Q.S. Ma, Mater. Des. 53, 816 https://doi.org/10.1016/j.matdes.2013.07.063 (2014).

    Article  Google Scholar 

  10. M.A. Mofid, and P. Lotfipoornasaji, J. Met. Mater. Miner. 31, 51 https://doi.org/10.14456/jmmm.2021.7 (2021).

    Article  Google Scholar 

  11. M.A. Mofid, M. Farshbaf, and H. Naeimian, Mater. Perform. Charact. 10(1), 285 https://doi.org/10.1520/MPC20200027 (2021).

    Article  Google Scholar 

  12. M.A. Mofid, and A. Mahdavi Nejad, Mater. Chem. Phys. 263, 124404 (2021).

    Article  Google Scholar 

  13. M.A. Mofid, H. Naeimian, M. Hajian Heidary, and M. Farshbaf, J. Adv. Mater. Process. 8(1), 55 (2020).

    Google Scholar 

  14. H. Naeimian, and M.A. Mofid, Trans. Nonferrous Met. Soc. China 30, 1267 https://doi.org/10.1016/S1003-6326(20)65294-3 (2020).

    Article  Google Scholar 

  15. H. Shakeri, and M.A. Mofid, Met. Mater. Int. 27, 4132 https://doi.org/10.1007/s12540-020-00731-8 (2021).

    Article  Google Scholar 

  16. H. Naeimian, and M.A. Mofid, Int. J. Mater. Res. 111, 424 https://doi.org/10.3139/146.111902 (2020).

    Article  Google Scholar 

  17. M.A. Mofid, and E. Loryaei, Mater. Werkst. 51, 413 (2020).

    Article  Google Scholar 

  18. M.A. Mofid, and E. Loryaei, J. Mater. Res. Technol. 8(5), 3872 (2019).

    Article  Google Scholar 

  19. D. McGuire, X. Huang, D. Nagy, and W. Chen, J. Eng. Gas Turbines Power 132, 062101 https://doi.org/10.1115/1.4000136 (2010).

    Article  Google Scholar 

  20. M.A. Arafin, M. Medraj, D.P. Turner, and P. Bocher, Mater. Chem. Phys. 106(1), 109 (2007).

    Article  Google Scholar 

  21. J. Ruiz-Vargas, N. Siredey-Schwaller, N. Gey, P. Bocher, and A. Hazotte, J. Mater. Process. Technol. 213(1), 20 (2013).

    Article  Google Scholar 

  22. X. Huang, and W. Miglietti, J. Eng. Gas Turbines Power 13, 010801–010811 (2012).

    Article  Google Scholar 

  23. D. Liu, Y. Song, B. Shi, Q. Zhang, X. Song, H. Niu, and J. Feng, J. Mater. Sci. Technol. 34(10), 1843–1850 https://doi.org/10.1016/j.jmst.2018.02.008 (2018).

    Article  Google Scholar 

  24. H.M. Hdz-García, A.I. Martinez, R. Munoz-Arroyo, J.L. Acevedo-Dávila, F. García-Vázquez, and F.A. Reyes-Valdes, Mater. Sci. Technol. 30, 259 (2014).

    Article  Google Scholar 

  25. J. Shen, Y.C. Liu, Y.J. Han, Y.M. Tian, and H.X. Gao, J. Electron. Mater. 35, 1672 (2006).

    Article  Google Scholar 

  26. M. Durand-Charre, The microstructure of superalloys (CRC Press, 1997).

    Google Scholar 

  27. C.T. Sims, Superalloys 1984, 399 (1984).

    Google Scholar 

  28. C. Hawk, Wide gap braze repairs of nickel superalloy gas turbine components, (Colorado School of Mines, Golden, Colorado, 2016)

  29. ASTM standard D1002, Standard test method for apparent shear strength of single-lap-joint adhesively bonded metal specimens by tension loading (metal-to-metal) [S] (1999)

  30. O.A. Idowu, O.A. Ojo, and M.C. Chaturvedi, Metall. Mater. Trans. A 37A, 2787 (2006).

    Article  Google Scholar 

  31. Y. Xu, X. Qiu, S. Wang, C. Luo, Y. Lu, and F. Xing, Vacuum 184, 109793 (2021).

    Article  Google Scholar 

  32. ASM Handbook, Alloy phase diagrams, 10th edn. (ASM Handbook, 1992), pp. 283–292

  33. P. Sung, and D. Poirier, Metall. Mater. Trans. A 30(8), 2173 (1999).

    Article  Google Scholar 

  34. Y.H. Kim, K.T. Kim, and I.H. Kim, Key Eng. Mater. 306–308, 935 (2006).

    Article  Google Scholar 

  35. T.B. Massalski, H. Okamoto, P.R. Subramanian, and L. Kacprzak, Binary alloy phase diagrams (ASM International, 1990), p2883.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Ammar Mofid.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mofid, M.A., Barazandeh, R. & Jafarzadegan, M. Vacuum Brazing of NIMONIC 105 Superalloy Using W-Rich BNi-10 and Conventional BNi-2 Fillers. JOM 75, 4749–4761 (2023). https://doi.org/10.1007/s11837-023-05944-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-05944-x

Navigation