Skip to main content
Log in

A Simple Model for Electrical Conductivity of Carbon Nanofiber Polymer Composites

  • Advanced Functional and Structural Thin Films and Coatings
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Literature studies have not reported an applicable model for electrical conductivity of carbon nanofiber (CNF) polymer composites. This study presents a theoretical methodology for conductivity of carbon nanofiber (CNF) polymer composites by CNF effective volume fraction, interphase thickness, percolation onset, CNF dimensions, CNF waviness, fraction of networked CNF, and tunneling size. The suggested model has been approved by comparing the experimental outputs with calculations. The predictions depict good agreement with the experimental data of several samples. In addition, the impressions of the main factors on the conductivity have been confirmed to justify the proposed model. Some terms, such as the percentage of percolated CNF, filler volume fraction, and tunneling distance, significantly control the conductivity, while percolation onset and CNF waviness unimportantly affect the electrical conductivity of CNF-filled composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The raw/processed data required to reproduce these findings can be shared as requested.

References

  1. A. Gharieh, and M.S. Seyed Dorraji, Sci. Rep. 11, 1 (2021).

    Google Scholar 

  2. Y. Zare, and K.Y. Rhee, JOM 73, 3693 (2021).

    Google Scholar 

  3. M. Khalifa, S. Peravali, S. Varsha, and S. Anandhan, JOM 74, 3162 (2022).

    Google Scholar 

  4. Z. Xu, C. Tonry, C. Beckwith, A. Kao, H. Wong, M.S. Shaffer, K. Pericleous, and Q. Li, Jom 74, 2470 (2022).

    Google Scholar 

  5. K. Nakamura, N. Suzuki, and T. Takase, Diam. Relat. Mater. 124, 108938 (2022).

    Google Scholar 

  6. R. Cong, J.-Y. Choi, J.-B. Song, M. Jo, H. Lee, and C.-S. Lee, Sci. Rep. 11, 1 (2021).

    Google Scholar 

  7. J.R. Junaqani, M. Kazazi, M.J.S. Shahraki, and M.D. Chermahini, JOM 74, 808 (2022).

    Google Scholar 

  8. A. Patil, M.S.K.K.Y. Nartu, F. Ozdemir, R. Banerjee, R.K. Gupta, and T. Borkar, JOM 74, 4583 (2022).

    Google Scholar 

  9. L. Shi, M. Liu, W. Zhang, W. Ren, S. Zhou, Q. Zhou, Y. Yang, and Z. Ren, JOM 74, 3082 (2022).

    Google Scholar 

  10. T. Goto, N. Sakakibara, K. Inoue, K. Mayumi, Y. Shimizu, T. Ito, K. Ito, Y. Hakuta, and K. Terashima, Compos. Sci. Technol. 215, 109028 (2021).

    Google Scholar 

  11. A. Mohammadpour-Haratbar, P. Kiaeerad, S. Mazinani, A.M. Bazargan, and F. Sharif, Ceram. Int. 48, 10015 (2022).

    Google Scholar 

  12. A.S. Haidyrah, P. Sundaresan, K. Venkatesh, S.K. Ramaraj, and B. Thirumalraj, Colloids Surf., A 627, 127112 (2021).

    Google Scholar 

  13. Z. Wang, S. Wu, J. Wang, A. Yu, and G. Wei, Nanomaterials 9, 1045 (2019).

    Google Scholar 

  14. A.L. Rivera-Briso, F.L. Aachmann, V. Moreno-Manzano, and Á. Serrano-Aroca, Int. J. Biol. Macromol. 143, 1000 (2020).

    Google Scholar 

  15. A.S. Levitt, M. Alhabeb, C.B. Hatter, A. Sarycheva, G. Dion, and Y. Gogotsi, J. Mater. Chem. A 7, 269 (2019).

    Google Scholar 

  16. J.H. Lee, J. Kim, D. Liu, F. Guo, X. Shen, Q. Zheng, S. Jeon, and J.K. Kim, Adv. Funct. Mater. 29, 1901623 (2019).

    Google Scholar 

  17. A. Mohamed, Synthesis, Characterization, and Applications Carbon Nanofibers, in Carbon-based Nanofillers and Their Rubber Nanocomposites (Elsevier, London, 2019), pp 243.

    Google Scholar 

  18. J. Wang, Y. Huyan, Z. Yang, A. Zhang, Q. Zhang, and B. Zhang, Carbon 152, 255 (2019).

    Google Scholar 

  19. J. Fawaz, and V. Mittal, Synthesis Techniques for Polymer Nanocomposites (Wiley, Hoboken, 2014), pp 1.

    Google Scholar 

  20. K. Lozano, and E. Barrera, J. Appl. Polym. Sci. 79, 125 (2001).

    Google Scholar 

  21. H. Ma, J. Zeng, M.L. Realff, S. Kumar, and D.A. Schiraldi, Compos. Sci. Technol. 63, 1617 (2003).

    Google Scholar 

  22. I.C. Finegan, G.G. Tibbetts, and R.F. Gibson, Compos. Sci. Technol. 63, 1629 (2003).

    Google Scholar 

  23. M. Shofner, K. Lozano, F. Rodríguez-Macías, and E. Barrera, J. Appl. Polym. Sci. 89, 3081 (2003).

    Google Scholar 

  24. A. Bledzki, M. Letman, A. Viksne, and L. Rence, Compos. A Appl. Sci. Manuf. 36, 789 (2005).

    Google Scholar 

  25. W. Gianelli, G. Ferrara, G. Camino, G. Pellegatti, J. Rosenthal, and R. Trombini, Polymer 46, 7037 (2005).

    Google Scholar 

  26. G. Sui, S. Jana, W. Zhong, M. Fuqua, and C. Ulven, Acta Mater. 56, 2381 (2008).

    Google Scholar 

  27. S. Lee, and Y.P. Jeon, J. Appl. Polym. Sci. 113, 2980 (2009).

    Google Scholar 

  28. A. Chanda, S.K. Sinha, and N.V. Datla, Compos. A Appl. Sci. Manuf. 149, 106543 (2021).

    Google Scholar 

  29. O. Folorunso, Y. Hamam, R. Sadiku, S.S. Ray, and G.J. Adekoya, J. Market. Res. 9, 15788 (2020).

    Google Scholar 

  30. F. Nanni, P. Travaglia, and M. Valentini, Compos. Sci. Technol. 69, 485 (2009).

    Google Scholar 

  31. S. Bao, G. Liang, and S.C. Tjong, Carbon 49, 1758 (2011).

    Google Scholar 

  32. G. Oberdörster, V. Castranova, B. Asgharian, and P. Sayre, J. Toxicol. Environ. Health, Part B 18, 121 (2015).

    Google Scholar 

  33. S. Mondal, L. Nayak, M. Rahaman, A. Aldalbahi, T.K. Chaki, D. Khastgir, and N.C. Das, Compos. B Eng. 109, 155 (2017).

    Google Scholar 

  34. A.K. Jonscher, J. Phys. D Appl. Phys. 32, R57 (1999).

    Google Scholar 

  35. D. Almond, and B. Vainas, J. Phys.: Condens. Matter 11, 9081 (1999).

    Google Scholar 

  36. S. Maiti, N.K. Shrivastava, and B. Khatua, Polym. Compos. 34, 570 (2013).

    Google Scholar 

  37. C. Feng, and L. Jiang, Compos. A Appl. Sci. Manuf. 47, 143 (2013).

    Google Scholar 

  38. Y. Zare, and K.Y. Rhee, Compos. B Eng. 155, 11 (2018).

    Google Scholar 

  39. W. Chanklin, J. Laowongkotr, and L.F. Chibante, Mater. Today Commun. 17, 153 (2018).

    Google Scholar 

  40. Y. Zare, and K.Y. Rhee, RSC Adv. 7, 34912 (2017).

    Google Scholar 

  41. Y. Zare, K.Y. Rhee, and S.-J. Park, JOM 74, 3059 (2022).

    Google Scholar 

  42. Y. Zare, and K.Y. Rhee, JOM 75, 592 (2023).

    Google Scholar 

  43. Y. Zare, and K.Y. Rhee, JOM 75, 669 (2023).

    Google Scholar 

  44. Y. Zare, and K.Y. Rhee, Appl. Clay Sci. 137, 176 (2017).

    Google Scholar 

  45. Y. Zare, Int. J. Adhes. Adhes. 54, 67 (2014).

    Google Scholar 

  46. Y. Zare, and K.Y. Rhee, Nanoscale Res. Lett. 12, 1 (2017).

    Google Scholar 

  47. Z. Zhou, N. Xie, X. Cheng, L. Feng, P. Hou, S. Huang, and Z. Zhou, Cement Concr. Compos. 109, 103539 (2020).

    Google Scholar 

  48. H. Shin, S. Yang, J. Choi, S. Chang, and M. Cho, Chem. Phys. Lett. 635, 80 (2015).

    Google Scholar 

  49. Y. Zare, and K. Rhee, Phys. Mesomech. 21, 351 (2018).

    Google Scholar 

  50. Y. Zare, J. Colloid Interface Sci. 486, 249 (2017).

    Google Scholar 

  51. S. Fujisawa, E. Togawa, and S. Kimura, Mater. Today Commun. 16, 105 (2018).

    Google Scholar 

  52. S. Gong, Z. Zhu, J. Li, and S. Meguid, J. Appl. Phys. 116, 194306 (2014).

    Google Scholar 

  53. K.K. Talamadupula, and G.D. Seidel, Comput. Mater. Sci. 197, 110616 (2021).

    Google Scholar 

  54. Y. Zare, and K.Y. Rhee, Compos. A Appl. Sci. Manuf. 100, 305 (2017).

    Google Scholar 

  55. R. Razavi, Y. Zare, and K.Y. Rhee, RSC Adv. 7, 50225 (2017).

    Google Scholar 

  56. Y. Zare, and K.Y. Rhee, Polym. Compos. 41, 748 (2020).

    Google Scholar 

  57. N. Ryvkina, I. Tchmutin, J. Vilčáková, M. Pelíšková, and P. Sáha, Synth. Met. 148, 141 (2005).

    Google Scholar 

  58. C. Li, E.T. Thostenson, and T.-W. Chou, Appl. Phys. Lett. 91, 223114 (2007).

    Google Scholar 

  59. J.-M. Zhu, Y. Zare, and K.Y. Rhee, Colloids Surf., A 539, 29 (2018).

    Google Scholar 

  60. S.K. Arjmandi, J. Khademzadeh Yeganeh, Y. Zare, and K.Y. Rhee, Sci. Rep. 13, 7 (2023).

    Google Scholar 

  61. S. Khalil Arjmandi, J. Khademzadeh Yeganeh, Y. Zare, and K.Y. Rhee, Materials 15, 7041 (2022).

    Google Scholar 

  62. F. Deng, and Q.-S. Zheng, Appl. Phys. Lett. 92, 071902 (2008).

    Google Scholar 

  63. T. Takeda, Y. Shindo, Y. Kuronuma, and F. Narita, Polymer 52, 3852 (2011).

    Google Scholar 

  64. Y. Yu, S. Song, Z. Bu, X. Gu, G. Song, and L. Sun, J. Mater. Sci. 48, 5727 (2013).

    Google Scholar 

  65. G.A. Jimenez, and S.C. Jana, Compos. A Appl. Sci. Manuf. 38, 983 (2007).

    Google Scholar 

  66. L.X. He, and S.C. Tjong, J. Nanosci. Nanotechnol. 11, 3916 (2011).

    Google Scholar 

  67. S.C. Tjong, G. Liang, and S. Bao, Polym. Eng. Sci. 48, 177 (2008).

    Google Scholar 

  68. R.B. Ladani, S. Wu, A.J. Kinloch, K. Ghorbani, J. Zhang, A.P. Mouritz, and C.H. Wang, Compos. Sci. Technol. 117, 146 (2015).

    Google Scholar 

  69. G.G. Tibbetts, M.L. Lake, K.L. Strong, and B.P. Rice, Compos. Sci. Technol. 67, 1709 (2007).

    Google Scholar 

  70. M. Inagaki, Y. Yang, and F. Kang, Adv. Mater. 24, 2547 (2012).

    Google Scholar 

  71. M. Panapoy, A. Dankeaw, and B. Ksapabutr, Thammasat Int J Sc Tech 13, 11 (2008).

    Google Scholar 

  72. A. Joshi, and V. Panwar, Mater. Today: Proc. 46, 10647 (2021).

    Google Scholar 

  73. M.R. Nobile, M. Raimondo, K. Lafdi, A. Fierro, S. Rosolia, and L. Guadagno, Polym. Compos. 36, 1152 (2015).

    Google Scholar 

  74. M.H. Al-Saleh, G.A. Gelves, and U. Sundararaj, Mater. Des. 1980–2015(52), 128 (2013).

    Google Scholar 

  75. R. Qiao, and L.C. Brinson, Compos. Sci. Technol. 69, 491 (2009).

    Google Scholar 

  76. S. Huang, Q. Fu, L. Yan, and B. Kasal, J. Market. Res. 13, 1441 (2021).

    Google Scholar 

  77. F. Dalmas, L. Chazeau, C. Gauthier, J.-Y. Cavaillé, and R. Dendievel, Polymer 47, 2802 (2006).

    Google Scholar 

  78. R. Taherian, Compos. Sci. Technol. 123, 17 (2016).

    Google Scholar 

  79. T. Tallman, and H. Hassan, Compos. Sci. Technol. 181, 107669 (2019).

    Google Scholar 

  80. M.A. Kashfipour, M. Guo, L. Mu, N. Mehra, Z. Cheng, J. Olivio, S. Zhu, J.M. Maia, and J. Zhu, Compos. Sci. Technol. 184, 107859 (2019).

    Google Scholar 

  81. A. Sumita, K. Sakata, Y. Hayakawa, S. Asai, K. Miyasaka, and M. Tanemura, Colloid Polym. Sci. 270, 134 (1992).

    Google Scholar 

  82. Z. Tu, J. Wang, C. Yu, H. Xiao, T. Jiang, Y. Yang, D. Shi, Y.-W. Mai, and R.K. Li, Compos. Sci. Technol. 134, 49 (2016).

    Google Scholar 

  83. V. Roldughin, and V. Vysotskii, Prog. Org. Coat. 39, 81 (2000).

    Google Scholar 

  84. B. Lee, W. Woo, H. Park, H. Hahm, J. Wu, and M. Kim, J. Mater. Sci. 37, 1839 (2002).

    Google Scholar 

  85. C. Li, E.T. Thostenson, and T.-W. Chou, Compos. Sci. Technol. 68, 1445 (2008).

    Google Scholar 

  86. B. Mortazavi, J. Bardon, and S. Ahzi, Comput. Mater. Sci. 69, 100 (2013).

    Google Scholar 

Download references

Funding

No funding.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jafar Khademzadeh Yeganeh or Kyong Yop Rhee.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arjmandi, S.K., Yeganeh, J.K., Gharib, N. et al. A Simple Model for Electrical Conductivity of Carbon Nanofiber Polymer Composites. JOM 75, 3365–3372 (2023). https://doi.org/10.1007/s11837-023-05937-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-05937-w

Navigation