Skip to main content
Log in

A New Approach to Nickel Recycling from Zinc Plant Residue: A Morphological and Crystallographic Study on the Effects of Zinc Impurity on the Electrowinning of Nickel

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Nickel-bearing zinc plant residues (cold filtercake, CFC) cause a serious threat to the environment. In this research, nickel deposits from an electrowinning from a nickel sulfate electrolyte containing a high concentration of zinc as an impurity were studied in two sections. In the first, effects of four parameters including Ni2+ concentration, pH, temperature and current density have been studied in a synthetic sulfate electrolyte, and based on current efficiency (CE) and morphological characterizations of the deposits, the optimum conditions were chosen as 30 g/L Ni2+, pH 3.5, 45°C and 200 A/m2. Subsequently, the effect of zinc impurity in the range of 0–600 mg/L was studied in terms of CE and morphology, purity and texture of the nickel deposits. The CE decreased as well as the deposit surface quality and purity by increasing the zinc concentration. Field emission scanning electron microscopy (FESEM) analysis revealed that when the Zn2+ concentration in the electrolytes increased from 0 mg/L to 75 mg/L, a continuous decrease in the nickel particle size was detected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R.G. McDonald and B.I. Whittington, J. Hydrometall. 91(1–4), 35 https://doi.org/10.1016/j.hydromet.2007.11.009 (2008).

    Article  Google Scholar 

  2. S.H. Joo, D. Ju Shin, C. Oh, J.P. Wang, G. Senanayake, and S.M. Shin, J. Hydrometall. 159, 65 https://doi.org/10.1016/j.hydromet.2015.10.012 (2016).

    Article  Google Scholar 

  3. L. Silvestri, A. Forcina, G. Arcese, and G. Bella, J. Clean. Prod. 273, 123083 https://doi.org/10.1016/j.jclepro.2020.123083 (2020).

    Article  Google Scholar 

  4. G. Granata, F. Pagnanelli, E. Moscardini, Z. Takacova, T. Havlik, and L. Toro, J. Power Sources 212, 205 https://doi.org/10.1016/j.jpowsour.2012.04.016 (2012).

    Article  Google Scholar 

  5. Y. Yang, S. Lei, S. Song, W. Sun, and L. Wang, Waste Manag. 102, 131 https://doi.org/10.1016/j.wasman.2019.09.044 (2020).

    Article  Google Scholar 

  6. M.S. Safarzadeh, D. Moradkhani, and P. Ashtari, J. Hydrometall. 97, 1 https://doi.org/10.1016/j.hydromet.2009.01.003 (2009).

    Article  Google Scholar 

  7. F. Faraji, A. Alizadeh, F. Rashchi, and N. Mostoufi, Rev. Chem. Eng. 38, 113 https://doi.org/10.1515/revce-2019-0073 (2020).

    Article  Google Scholar 

  8. A. Özverdİ and M. Erdem, J. Hydrometall. 100(3–4), 103 https://doi.org/10.1016/j.hydromet.2009.10.011 (2010).

    Article  Google Scholar 

  9. S. Pradhan, R. Nayak, and S. Mishra, Int. J. Environ. Sci. Technol. 19, 4537 https://doi.org/10.1007/s13762-021-03356-5 (2022).

    Article  Google Scholar 

  10. A. Fattahi, F. Rashchi, and E. Abkhoshk, J. Hydrometall. 161, 185 https://doi.org/10.1016/j.hydromet.2016.02.003 (2016).

    Article  Google Scholar 

  11. D. Moradkhani, M. Rasouli, D. Behnian, H. Arjmandfar, and P. Ashtari, J. Hydrometall. 115–116, 84 https://doi.org/10.1016/j.hydromet.2011.12.021 (2012).

    Article  Google Scholar 

  12. P.M. Cole and K.C. Sole, Miner. Process. Extr. Metall. Rev. 24(2), 91 https://doi.org/10.1080/08827500306897 (2003).

    Article  Google Scholar 

  13. O.S.M. Kani, A. Azizitorghabeh, and F. Rashchi, Miner. Eng. 169, 106944 https://doi.org/10.1016/j.mineng.2021.106944 (2021).

    Article  Google Scholar 

  14. E. Vahidi, F. Rashchi, and D. Moradkhani, Miner. Eng. 22(2), 204 https://doi.org/10.1016/j.mineng.2008.05.002 (2009).

    Article  Google Scholar 

  15. A.M. Alfantazi and A. Shakshouki, J. Electrochem. Soc. 149(10), C506 https://doi.org/10.1149/1.1506933 (2002).

    Article  Google Scholar 

  16. M.A.M. Ibrahim, J. Appl. Electrochem. 36(3), 295 https://doi.org/10.1007/s10800-005-9077-8 (2006).

    Article  Google Scholar 

  17. N.C. Pissolati and D. Majuste, J. Hydrometall. 175, 193 https://doi.org/10.1016/j.hydromet.2017.11.012 (2018).

    Article  Google Scholar 

  18. C. Lupi, M. Pasquali, and A. Dell’Era, Miner. Eng. 19(12), 1246 https://doi.org/10.1016/j.mineng.2006.04.002 (2006).

    Article  Google Scholar 

  19. K. Murase, T. Honda, T. Hirato, and Y. Awakura, Metall. Mater. Trans. B 29(6), 1193 https://doi.org/10.1007/s11663-998-0041-y (1998).

    Article  Google Scholar 

  20. J. Yeager, J.P. Cels, E. Yeager, and F. Hovorka, J. Electrochem. Soc. 106(4), 328 https://doi.org/10.1149/1.2427341 (1959).

    Article  Google Scholar 

  21. M. Saitou, S. Oshiro, and S.M.A. Hossain, J. Appl. Electrochem. 38(3), 309 https://doi.org/10.1007/s10800-007-9439-5 (2008).

    Article  Google Scholar 

  22. L.K. Wu, W.K. Wang, H.Z. Cao, G.Y. Hou, Y.P. Tang, and G.Q. Zheng, J. Electrochem. Soc. 163(14), D829 https://doi.org/10.1149/2.1121614jes (2016).

    Article  Google Scholar 

  23. R. Srinivasan and G.N.K. Ramesh Bapu, Trans. IMF 91(1), 52 https://doi.org/10.1179/0020296712Z.00000000062 (2013).

    Article  Google Scholar 

  24. C. Li, X. Li, Z. Wang, and H. Guo, Trans. Nonferrous Met. Soc. China 17(6), 1300 https://doi.org/10.1016/S1003-6326(07)60266-0 (2007).

    Article  Google Scholar 

  25. M.M. Kamel, Z.M. Anwer, I.T. Abdel-Salam, and I.S. Ibrahim, Trans. IMF 88(4), 191 https://doi.org/10.1179/002029610X12696136822437 (2010).

    Article  Google Scholar 

  26. F. Crundwell, M. Moats, and V. Ramachandran, Extractive Metallurgy of Nickel, Cobalt and Platinum Group Metals (Elsevier, Oxford, 2011).

    Google Scholar 

  27. M. Holm and T.J. O’Keefe, Miner. Eng. 13(2), 193 https://doi.org/10.1016/S0892-6875(99)00165-X (2000).

    Article  Google Scholar 

  28. S.C. Das and P.G. Krishna, Int. J. Miner. Process. 46(1–2), 91 https://doi.org/10.1016/0301-7516(95)00056-9 (1996).

    Article  Google Scholar 

  29. J.O. Bockris, B.E. Conway, and R.E. White, Modern Aspects of Electrochemistry (Springer, Berlin, 1992).

    Google Scholar 

  30. J.O.M. Bockris, Fundamental Aspects of Electrocrystallization (Springer, Berlin, 2012).

    Google Scholar 

  31. V.S. Nikitin, T.N. Ostanina, V.M. Rudoi, T.S. Kuloshvili, and A.B. Darintseva, J. Electroanal. Chem. 870, 114230 https://doi.org/10.1016/j.jelechem.2020.114230 (2020).

    Article  Google Scholar 

  32. D.R. Gabe, J. Appl. Electrochem. 27(8), 908 https://doi.org/10.1023/A:1018497401365 (1997).

    Article  Google Scholar 

  33. L.U. Jing, Q.-H. Yang, and Z. Zhang, Trans. Nonferrous Met. Soc. China 20, s97 https://doi.org/10.1016/S1003-6326(10)60020-9 (2010).

    Article  Google Scholar 

  34. K.M. Yin and B.T. Lin, Surf. Coat. Technol. 78(1–3), 205 https://doi.org/10.1016/0257-8972(94)02410-3 (1996).

    Article  Google Scholar 

  35. S.K. Gogia and S.C. Das, J. Appl. Electrochem. 21(1), 64 https://doi.org/10.1007/BF01103832 (1991).

    Article  Google Scholar 

  36. U.S. Mohanty, B.C. Tripathy, P. Singh, and S.C. Das, Miner. Eng. 15(7), 531 https://doi.org/10.1016/S0892-6875(02)00076-6 (2002).

    Article  Google Scholar 

  37. R.R. Samal, C.K. Sarangi, B.C. Tripathy, K. Sanjay, I.N. Bhattacharya, and T. Subbaiah, J. Hydrometall. 139, 39 https://doi.org/10.1016/j.hydromet.2013.07.003 (2013).

    Article  Google Scholar 

  38. L. Schoeman, E.N. Nsiengani, K.C. Sole, and R. Sandenbergh, J. Hydrometall. 194, 05332 https://doi.org/10.1016/j.hydromet.2020.105332 (2020).

    Article  Google Scholar 

  39. S.K. Gogia and S.C. Das, Metall. Trans. B 19(6), 823 https://doi.org/10.1007/BF02651406 (1988).

    Article  Google Scholar 

  40. B.D. Cullity, Elements of X-Ray Diffraction (Addison-Wesley Publishing, Boston, 1956).

    MATH  Google Scholar 

  41. M. Holm and T.J. O’Keefe, J. Appl. Electrochem. 30(10), 1125 (2000).

    Article  Google Scholar 

  42. D. Kittely and M.J. Nicol, Electrometall. 361 (2001)

  43. A. Brenner, Electrodeposition of Alloys: Principles and Practice (Elsevier, Amsterdam, 2013).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Saeid Karimi or Fereshteh Rashchi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alizadeh, A., Karimi, S., Rashchi, F. et al. A New Approach to Nickel Recycling from Zinc Plant Residue: A Morphological and Crystallographic Study on the Effects of Zinc Impurity on the Electrowinning of Nickel. JOM 75, 3197–3207 (2023). https://doi.org/10.1007/s11837-023-05914-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-05914-3

Navigation