Skip to main content
Log in

Numerical and Experimental Investigation of Solidification Structure and Macrosegregation in Continuously Cast 2311 Die Steel Slab

  • Advances in Grain Refinement during Solidification
  • Published:
JOM Aims and scope Submit manuscript

Abstract

A cellular automaton-finite element model and secondary dendrite arm spacing (SDAS) model were established to study the solidification structure and secondary dendrites on the slab of 2311 die steel. The temperature field and solidification structure were verified by nail shooting and acid etching experiments. The SDAS model was obtained by mathematical model and simulation results, which were in good agreement with the results observed by the metallographic microscope. After that, two models were used to simulate the solidification structure and SDAS under different slab thicknesses. In this study, the effect of slab thickness on equiaxed crystal ratio (ECR) and SDAS under the same specific water flow and superheat was studied, and its impact on macrosegregation was further analyzed. With the increase of slab thickness, the ECR increases. The distance between the columnar to equiaxed transition position and the slab surface increases by about 5 mm for every 25-mm increase in slab thickness. Within 30 mm from the slab center, with the increase of slab thickness, the SDAS increases. When the slab thickness increases by 25 mm, the SDAS at the center of the slab increases by about 20 μm. The thicker the slab is, the larger the absolute thickness of center segregated zone, but the segregation degree decreases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M. Yamazaki, Y. Natsume, H. Harada, and K. Ohsasa, ISIJ Int. 46, 903 (2006).

    Article  Google Scholar 

  2. H. Harada, K. Miyazawa, T. Matsumiya, T. Morohoshi, and H. Esaka, Tetsu-to-Hagané 89, 265 (2003).

    Article  Google Scholar 

  3. G. Straffelini, L. Lutterotti, M. Tonolli, and M. Lestani, ISIJ Int. 51, 1448 (2011).

    Article  Google Scholar 

  4. C. Jing, X. Wang, and M. Jiang, Steel Res. Int. 82, 1173 (2011).

    Article  Google Scholar 

  5. V. Ludlow, A. Normanton, and A. Anderson, Ironmak. Steelmak. 32, 68 (2005).

    Article  Google Scholar 

  6. K. Ayata, T. Mori, T. Fujimoto, T. Ohnishi, and I. Wakasugi, Trans. ISIJ. 24, 931 (1984).

    Article  Google Scholar 

  7. K. Ayata, H. Mori, K. Taniguchi, and H. Matsuda, ISIJ Int. 35, 680 (1995).

    Article  Google Scholar 

  8. H. An, Y. Bao, M. Wang, Q. Yang, and Y. Huang, Ironmak. Steelmak. 47, 1 (2019).

    Google Scholar 

  9. S.K. Choudhary, and A. Ghoush, ISIJ Int. 34, 338 (1994).

    Article  Google Scholar 

  10. S.K. Choudhary, and S. Ganguly, ISIJ Int. 47, 1759 (2007).

    Article  Google Scholar 

  11. Z. Hou, F. Jiang, and G. Cheng, ISIJ Int. 52, 1301 (2012).

    Article  Google Scholar 

  12. M. Hisashi, T. Nobuyoshi, S. Norio, and H. Masazumi, Trans. Iron Steel Inst. 12, 102 (1972).

    Article  Google Scholar 

  13. J.D. Hunt, Mater. Sci. Eng. 65, 75 (1984).

    Article  Google Scholar 

  14. M. Gäumann, R. Trivedi, and W. Kurz, Mater. Sci. Eng. A226–228, 763 (1997).

    Article  Google Scholar 

  15. M. Gäumann, C. Bezençon, and P. Canalis, Acta Mater. 49, 1051 (2001).

    Article  Google Scholar 

  16. W. Kurz, B. Giovanola, and R. Trivedi, Acta Metall. 34, 823 (1986).

    Article  Google Scholar 

  17. G. Lesoult, Mater. Sci. Eng. A 413–414, 19 (2005).

    Article  Google Scholar 

  18. G. Krauss, The 2003 Howe Memorial Lecture Published with permission of the Iron & Steel Society

  19. F. Mayer, M. Wu, and A. Ludwig, Steel Res. Int. 81, 660 (2010).

    Article  Google Scholar 

  20. M.C. Flemings, and G.E. Nereo, Trans. AIME. 239, 1449 (1967).

    Google Scholar 

  21. M.C. Flemings, ISIJ Int. 40, 833 (2000).

    Article  Google Scholar 

  22. G. Lesoult, Mater. Sci. Eng. A 19, 413 (2005).

    Google Scholar 

  23. D. Apelian, M.C. Flemings, and R. Mehrabian, Metall. Trans. 5, 2533 (1974).

    Article  Google Scholar 

  24. N. Streat, and F. Weinberg, Metall. Trans. B. 7, 417 (1976).

    Article  Google Scholar 

  25. D.R. Poirier, Metall. Trans. B. 18, 245 (1987).

    Article  Google Scholar 

  26. J. Li, H. Wu, Y. Liu, and Y. Sun, China Foundry 19, 63 (2022).

    Article  Google Scholar 

  27. H. Yang, X. Zhang, K. Deng, W. Li, Y. Gan, and L. Zhao, Metall. Mater. Trans. B 29, 1345 (1998).

    Article  Google Scholar 

  28. Q. Fang, H. Ni, H. Zhang, B. Wang, and C.S. Liu, Metals 7, 483 (2017).

    Article  Google Scholar 

  29. R.A. Hardin, K. Liu, C. Beckermann, and A. Kapoor, Metall. Mater. Trans. B. 34, 297 (2003).

    Article  Google Scholar 

  30. M. Rappaz, and Ch.A. Gandin, Acta Metall. Mater. 41, 34 (1993).

    Article  Google Scholar 

  31. W. Kurz, and D.J. Fisher, Fundaments of Solidification, 4th, revised. (Trans Tech Publishers, Aedermannsdorf, 1998).

    Google Scholar 

  32. L. Bai, B. Wang, and H. Zhong, Metals 6, 53 (2016).

    Article  Google Scholar 

  33. Y.-M. Won, and B.G. Thomas, Metall. Mater. Trans. A 32, 1755 (2001).

    Article  Google Scholar 

  34. P. Zhang, M. Wang, P. Shi, and L. Xu, Metals 12, 1826 (2022).

    Article  Google Scholar 

  35. S. Luo, and M. Zhu, Seppo LOUHENKILPI: ISIJ Int. 52, 823 (2012).

    Google Scholar 

  36. Q. Fang, H. Ni, and H. Zhang, Metals 7, 1 (2017).

    Google Scholar 

  37. W. Li, Metallurgy and Physical Chemistry of Materials (Metallurgical Industry Press, Beijing, 2001), pp531–533.

    Google Scholar 

  38. A. Ohno, Solidification: The Separation Theory and Its Practical Applications (Springer, Berlin, 1987).

    Book  Google Scholar 

  39. S.K. Choudhary, S. Ganguly, A. Sengupta, and V. Sharma, J. Mater. Process. Technol. 243, 312 (2017).

    Article  Google Scholar 

  40. T. Qu, S. Wang, and K. Feng, Contin. Cast. 1, 7 (2013).

    Google Scholar 

  41. H. Wu, Y. Sun, Y. Li, X. Lu, F. Zeng, and Y. Yang, Spec. Steel. 42, 7 (2021).

    Google Scholar 

  42. Y. Gan, Handbook of Modern Continuous Casting Steel (Metallurgical Industry Press, Beijing, 2010), pp78–82.

    Google Scholar 

  43. X. Gao, S. Yang, and J. Li, Mater. Des. 110, 284 (2016).

    Article  Google Scholar 

  44. H. An, Y. Bao, M. Wang, Q. Yang, and Y. Dang, Ironmak. Steelmak. 47, 1063 (2020).

    Article  Google Scholar 

  45. V. Ludlow, A. Normanton, A. Anderson, M. Thiele, J. Ciriza, J. Laraudogoitia, and W. van der Knoop, Ironmak. Steelmak. 32, 68 (2005).

    Article  Google Scholar 

  46. A. Ghosh, Segregation in cast products. Sadhana 26, 5 (2001).

    Article  Google Scholar 

  47. H. Mori, N. Tanaka, N. Sato, and M. Hirai, Trans. ISIJ. 12, 102 (1972).

    Article  Google Scholar 

Download references

Funding

No funds, grants or other support was received. The authors have no financial or proprietary interests in any material discussed in this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lijun Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 968 kb).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, P., Xu, L., Shi, P. et al. Numerical and Experimental Investigation of Solidification Structure and Macrosegregation in Continuously Cast 2311 Die Steel Slab. JOM 75, 2853–2864 (2023). https://doi.org/10.1007/s11837-023-05911-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-05911-6

Navigation