Skip to main content
Log in

Microstructure Evolution and Mechanical Properties of Ti and Zr Micro-Alloyed Al-Cu Alloy Fabricated by Wire + Arc Additive Manufacturing

  • Advanced Materials for Additive Manufacturing
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The inhomogeneous microstructure and mechanical property anisotropy of aluminum alloys fabricated by wire + arc additive manufacturing (WAAM) commonly have negative impacts on the applications of WAAM aluminum alloy. This article focuses on a new Al-Cu-Mn-Ti-Zr aluminum alloy based on pulsed gas metal arc additive manufacturing, aiming to refine the microstructure and alleviate the mechanical property anisotropy during depositions. The microstructure and mechanical properties of the as-deposited and T6 heat-treated WAAM Al-Cu aluminum alloy were investigated. The microstructure analysis revealed that the grain structure of the as-deposited alloy consisted of predominantly fine equiaxed grains and the average size of the grains was 12.7 μm. The Al3Ti and Al3(Ti, Zr) particles precipitated within the grains acted as the heterogeneous nucleation nuclei of α-Al, promoting the formation of fine equiaxed grains during deposition. After T6 heat treatment, most of the eutectic structure was dissolved into the α-Al matrix, and the high density of fine needle-like θ' precipitates could be observed by transmission electron microscopy (TEM). Hence, the precipitation strengthening of θ' significantly improved the mechanical properties of T6 heat-treated samples. However, the formation of pores caused a reduction in the elongation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. K.S. Derekar, Mater. Sci. Tech. 34, 895–916 https://doi.org/10.1080/02670836.2018.1455012 (2018).

    Article  Google Scholar 

  2. E. Karayel, Y. Bozkurt, J. Mater. Res. Technol. 9(5), 11424–11438 https://doi.org/10.1016/j.jmrt.2020.08.039 (2020).

    Article  Google Scholar 

  3. S. Fan, X. Guo, Z. Li, J. Ma, and F. Li, J. Mater. Eng. Perform. (2023). https://doi.org/10.1007/s11665-023-08233-5

    Article  Google Scholar 

  4. G. Campatelli, D. Campanella, A. Barcellona, L. Fratini, N. Grossi, G. Ingarao, and C.I.R.P.J. Manuf, Sci. Tech. 31, 492–499 https://doi.org/10.1016/j.cirpj.2020.08.001 (2020).

    Article  Google Scholar 

  5. F.M. Ghaini, M. Sheikhi, M.J. Torkamany, and J. Sabbaghzadeh, Mater. Sci. Eng. A 519(1–2), 167–171 https://doi.org/10.1016/j.msea.2009.04.056 (2009).

    Article  Google Scholar 

  6. J. Liu, and S. Kou, Acta Mater. 125, 513–523 https://doi.org/10.1016/j.actamat.2016.12.028 (2017).

    Article  Google Scholar 

  7. C.G. Pickin, S.W. Williams, P. Prangnell, C. Derry, and M. Lunt, Sci. Thechnol. Weld Joi. 15(6), 491–496 https://doi.org/10.1179/136217110X12785889549660 (2013).

    Article  Google Scholar 

  8. Y. Zhou, X. Lin, N. Kang, W. Huang, J. Wang, Z. Wang, and J. Mater, Sci. Tech. 37, 143–153 https://doi.org/10.1016/j.jmst.2019.06.016 (2020).

    Article  Google Scholar 

  9. B. Cong, Z. Qi, B. Qi, H. Sun, G. Zhao, and J. Ding, App. Sci. 7(3), 275 https://doi.org/10.3390/app7030275 (2017).

    Article  Google Scholar 

  10. J.Y. Bai, C.L. Fan, S.B. Lin, C.L. Yang, B.L. Dong, and J. Mater, Eng. Perform. 26(4), 1808–1816 https://doi.org/10.1007/s11665-017-2627-5 (2017).

    Article  Google Scholar 

  11. J.Y. Bai, C.L. Yang, S.B. Lin, B.L. Dong, and C.L. Fan, Int. J Adv. Manuf. Tech. 86(1–4), 479–485 https://doi.org/10.1007/s00170-015-8168-x (2015).

    Article  Google Scholar 

  12. D. Zhang, D. Qiu, M.A. Gibson, Y. Zheng, H.L. Fraser, D.H. StJohn, and M.A. Easton, Nature 576(7785), 91–95 https://doi.org/10.1038/s41586-019-1783-1 (2019).

    Article  Google Scholar 

  13. L. Yuan, C. O’Sullivan, and C.M. Gourlay, Acta Mater. 60(3), 1334–1345 https://doi.org/10.1016/j.actamat.2011.11.042 (2012).

    Article  Google Scholar 

  14. X. Fang, L. Zhang, G. Chen, K. Huang, F. Xue, L. Wang, J. Zhao, and B. Lu, Mater. Sci. Eng. A 800, 140168 https://doi.org/10.1016/j.msea.2020.140168 (2021).

    Article  Google Scholar 

  15. Z. Wang, Y. Gao, J. Huang, C. Wu, G. Wang, and J. Liu, Mater. Sci. Eng. A 855, 143770 https://doi.org/10.1016/j.msea.2022.143770 (2022).

    Article  Google Scholar 

  16. Z. Zhang, Z. Ma, S. He, G. Song, and L. Liu, J. Mater. Eng. Perform. 30(9), 6640–6649 https://doi.org/10.1007/s11665-021-05944-5 (2021).

    Article  Google Scholar 

  17. G. Liu, J. Xiong, and L. Tang, Addit. Manuf. 35, 101375 https://doi.org/10.1016/j.addma.2020.101375 (2020).

    Article  Google Scholar 

  18. H.M. Lee, J. Lee, and Z.H. Lee, Scripta Mater. 25, 517–520 https://doi.org/10.1016/0956-716X(91)90082-C (1991).

    Article  Google Scholar 

  19. G.B. Teng, C.Y. Liu, Z.Y. Ma, W.B. Zhou, L.L. Wei, Y. Chen, J. Li, and Y.F. Mo, Effects of minor Sc addition on the microstructure and mechanical properties of 7055 Al alloy during aging. Mater. Sci. Eng. A 713, 61–66 https://doi.org/10.1016/j.msea.2017.12.067 (2018).

    Article  Google Scholar 

  20. L. Wang, Y. Suo, Z. Liang, D. Wang, and Q. Wang, Mater. Lett. 241, 231–234 https://doi.org/10.1016/j.matlet.2019.01.117 (2019).

    Article  Google Scholar 

  21. H. Zhang, H. Zhu, X. Nie, J. Yin, Z. Hu, and X. Zeng, Scripta Mater. 134, 6–10 https://doi.org/10.1016/j.scriptamat.2017.02.036 (2017).

    Article  Google Scholar 

  22. T.V. Atamanenko, D.G. Eskin, M. Sluiter, and L. Katgerman, J Alloy Compd. 509, 57–60 https://doi.org/10.1016/j.jallcom.2010.09.046 (2011).

    Article  Google Scholar 

  23. S.S. Nayak, S.K. Pabi, and B.S. Murty, Intermetallics 15(1), 26–33 https://doi.org/10.1016/j.intermet.2006.02.003 (2007).

    Article  Google Scholar 

  24. X. Nie, H. Zhang, H. Zhu, Z. Hu, Y. Qi, and X. Zeng, Mater. Lett. 248, 5–7 https://doi.org/10.1016/j.matlet.2019.03.112 (2019).

    Article  Google Scholar 

  25. Q. Zheng, C. Yang, S. Wang, A. Yu, H. Chen, and Y. He, Mater. Res. Innov. 18, 59–63 https://doi.org/10.1179/1432891714Z.000000000377 (2014).

    Article  Google Scholar 

  26. X. Liu, Y. Liu, Z. Zhou, K. Wang, Q. Zhan, and X. Xiao, Mater. Sci. Eng. A 813, 141171 https://doi.org/10.1016/j.msea.2021.141171 (2021).

    Article  Google Scholar 

  27. B. Tomar, S. Shiva, and T. Nath, Mater. Today Commun. 31, 103739 https://doi.org/10.1016/j.mtcomm.2022.103739 (2022).

    Article  Google Scholar 

  28. K.E.K. Vimal, M.N. Srinivas, and S. Rajak, Mater. Today Proc. 41, 1139–1145 https://doi.org/10.1016/j.matpr.2020.09.153 (2021).

    Article  Google Scholar 

  29. J. Gu, M. Gao, S. Yang, J. Bai, J. Ding, and X. Fang, Addit. Manuf. 30, 100900 https://doi.org/10.1016/j.addma.2019.100900 (2019).

    Article  Google Scholar 

  30. E.M. Ryan, T.J. Sabin, J.F. Watts, M.J. Whiting, and J. Mater, Process. Tech. 262, 577–584 https://doi.org/10.1016/j.jmatprotec.2018.07.030 (2018).

    Article  Google Scholar 

  31. J. Gu, S. Yang, M. Gao, J. Bai, Y. Zhai, and J. Ding, Mater. Des. 186, 108288 https://doi.org/10.1016/j.matdes.2019.108288 (2020).

    Article  Google Scholar 

  32. H. Toda, T. Hidaka, M. Kobayashi, K. Uesugi, A. Takeuchi, and K. Horikawa, Acta Mater. 57(7), 2277–2290 https://doi.org/10.1016/j.actamat.2009.01.026 (2009).

    Article  Google Scholar 

  33. Z. Wang, X. Lin, L. Wang, Y. Cao, Y. Zhou, and W. Huang, Addit. Manuf. 47, 102298 https://doi.org/10.1016/j.addma.2021.102298 (2021).

    Article  Google Scholar 

  34. J.D. Hunt, Mater. Sci. Eng. 65, 75–83 https://doi.org/10.1016/0025-5416(84)90201-5 (1984).

    Article  Google Scholar 

  35. D.H. StJohn, M. Qian, M.A. Easton, and P. Cao, Acta Mater. 59(12), 4907–4921 https://doi.org/10.1016/j.actamat.2011.04.035 (2011).

    Article  Google Scholar 

  36. B. Cong, J. Ding, and S. Williams, Int. J Adv. Manuf. Technol. 76(9–12), 1593–1606 https://doi.org/10.1007/s00170-014-6346-x (2014).

    Article  Google Scholar 

  37. B. Dong, X. Cai, S. Lin, X. Li, C. Fan, C. Yang, and H. Sun, Addit. Manuf. 36, 101447 https://doi.org/10.1016/j.addma.2020.101447 (2020).

    Article  Google Scholar 

  38. W. Kurz and D.J. Fisher, Fundamentals of solidification (Trans Tech Pubn, Switzerland, 1989), pp. 24–26.

  39. G. Yi, H. Li, C. Zang, W. Xiao, and C. Ma, Mater. Sci. Eng. A 855, 143903 https://doi.org/10.1016/j.msea.2022.143903 (2022).

    Article  Google Scholar 

  40. J. Gu, M. Gao, S. Yang, J. Bai, Y. Zhai, and J. Ding, Mater. Des. 186, 108357 https://doi.org/10.1016/j.matdes.2019.108357 (2020).

    Article  Google Scholar 

  41. J. Gu, J. Ding, S.W. Williams, H. Gu, J. Bai, Y. Zhai, and P. Ma, Mater. Sci. Eng. A 651, 18–26 https://doi.org/10.1016/j.msea.2015.10.101 (2016).

    Article  Google Scholar 

  42. J.F. Nie, and B.C. Muddle, Acta Mater. 56(14), 3490–3501 https://doi.org/10.1016/j.actamat.2008.03.028 (2008).

    Article  Google Scholar 

  43. P.P. Ma, C.H. Liu, C.L. Wu, L.M. Liu, and J.H. Chen, Mater. Sci. Eng. A 676, 138–145 https://doi.org/10.1016/j.msea.2016.08.068 (2016).

    Article  Google Scholar 

  44. W.S. Tian, Q.L. Zhao, Q.Q. Zhang, F. Qiu, and Q.C. Jiang, Mater. Sci. Eng. A 717, 105–112 https://doi.org/10.1016/j.msea.2018.01.069 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by the Key Project of Research and Development in Yunnan Province, grant number 202103AN080001-002, 202202AG050007-4 and Key Project of Yunnan Fundamental Research, grant number 202101AS070017.

Author information

Authors and Affiliations

Authors

Contributions

SF: Methodology, Investigation, Writing, Formal analysis, Data curation. XG: Conceptualization, Methodology, Review and Editing, Writing. QJ: Conceptualization, Review and Editing. ZL: Investigation, Writing. JM: Investigation, Writing.

Corresponding authors

Correspondence to Xuming Guo or Qingwei Jiang.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, S., Guo, X., Jiang, Q. et al. Microstructure Evolution and Mechanical Properties of Ti and Zr Micro-Alloyed Al-Cu Alloy Fabricated by Wire + Arc Additive Manufacturing. JOM 75, 4115–4127 (2023). https://doi.org/10.1007/s11837-023-05900-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-05900-9

Navigation