Skip to main content
Log in

Preparation, Characterisation, and Properties of Anti-erosion Grouting Materials from Industrial Solid Waste

  • Composite Materials for Sustainable and Eco-Friendly Material Development and Application
  • Published:
JOM Aims and scope Submit manuscript

Abstract

To address the environmental problems caused by the storage of solid waste, such as red mud (RM), silica fume (SF), carbide slag (CS), and flue gas desulphurisation gypsum (FDG), and the poor corrosion resistance of Portland cement (PC), anti-erosion grouting materials (AGM) are synthesised from RM, SF, CS, and FDG. The synthesis, structural characterisation, and properties of AGM are reported and compared with those of typical PC. The results show that the AGM matrix is composed mainly of hydration phases: 68.3 wt.% β-dicalcium silicate (β-C2S), 21 wt.% tetracalcium ferroaluminate (C4AF), and 8.4 wt.% tricalcium aluminate (C3A). AGM prepared with 8 wt.% FDG exhibits the best compressive strength and rheological characteristics. Hydration of the AGM leads to the formation of ettringite, calcium alumino-ferrite hydrate (C3(A, F)H6), and aluminium gel, resulting in a compressive strength of 29.2 MPa at 210 days. The anti-erosion coefficients K of AGM after exposure to different erosion solutions for 28 days are > 0.99, indicating better corrosion resistance than PC. This anti-erosion property is due to a mineral composition characterised by low tricalcium silicate(C3S) content and high C4AF content. This study provides a feasible and promising method for the preparation of for coastal engineering materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. S. Li, Y. Qi, Z. Li, H. Li, and J. Zhang, Tunn. Undergr. Sp. Tech. 113, 103939 https://doi.org/10.1016/j.tust.2021.103939 (2021).

    Article  Google Scholar 

  2. H. Li, Y. Zhang, J. Wu, X. Zhang, L. Zhang, and Z. Li, Constr. Build. Mater. 254, 119250 https://doi.org/10.1016/j.conbuildmat.2020.119250 (2020).

    Article  Google Scholar 

  3. X. Wang, S. Li, Z. Xu, X. Li, P. Lin, and C. Lin, Tunn. Undergr. Sp. Tech. 92, 103033 https://doi.org/10.1016/j.tust.2019.103033 (2019).

    Article  Google Scholar 

  4. Q. Cui, H. Wu, S. Shen, Y. Xu, and G. Ye, Nat. Hazards 77(1), 129 https://doi.org/10.1007/s11069-014-1585-6 (2015).

    Article  Google Scholar 

  5. F. Qu, W. Li, W. Dong, V. Tam, and T. Yu, J. Build. Eng. 35, 102074 https://doi.org/10.1016/j.jobe.2020.102074 (2021).

    Article  Google Scholar 

  6. R.A. Medeiros-Junior, M.G. Lima, P.C. Brito, and M.H.F. Medeiros, Ocean Eng. 103, 78 https://doi.org/10.1016/j.oceaneng.2015.04.079 (2015).

    Article  Google Scholar 

  7. J. Yang, C. Zhang, J. Fu, S. Wang, X. Ou, and Y. Xie, Tunn. Undergr. Sp. Tech. 100, 103380 https://doi.org/10.1016/j.tust.2020.103380 (2020).

    Article  Google Scholar 

  8. S. Li, J. Zhang, Z. Li, Y. Gao, Y. Qi, H. Li, and Q. Zhang, Constr. Build. Mater. 224, 66 https://doi.org/10.1016/j.conbuildmat.2019.07.057 (2019).

    Article  Google Scholar 

  9. J. Liu, K. Yuen, W. Chen, X. Zhou, and W. Wang, Eng. Geol. 279, 105896 https://doi.org/10.1016/j.enggeo.2020.105896 (2020).

    Article  Google Scholar 

  10. Z. Hong, J. Zuo, Z. Zhang, C. Liu, L. Liu, and H. Liu, Constr. Build. Mater. 245, 118420 https://doi.org/10.1016/j.conbuildmat.2020.118420 (2020).

    Article  Google Scholar 

  11. K. Zhao, Y. Qiao, P. Zhang, J. Bao, and Y. Tian, Constr. Build. Mater. 258, 119655 https://doi.org/10.1016/j.conbuildmat.2020.119655 (2020).

    Article  Google Scholar 

  12. K.D. Weerdt, H. Justnes, and M.R. Geiker, Cem. Concr. Compos. 47, 53 https://doi.org/10.1016/j.cemconcomp.2013.09.015 (2014).

    Article  Google Scholar 

  13. G. Li, A. Zhang, Z. Song, C. Yan, W. Jun, and J. Zhang, Constr. Build. Mater. 157, 852 https://doi.org/10.1016/j.conbuildmat.2017.09.175 (2017).

    Article  Google Scholar 

  14. M. Schneider, Cem. Concr. Res. 78, 14 https://doi.org/10.1016/j.cemconres.2015.05.014 (2015).

    Article  Google Scholar 

  15. P.V. Nidheesh, and M.S. Kumar, J. Clean. Prod. 231, 856 https://doi.org/10.1016/j.jclepro.2019.05.251 (2019).

    Article  Google Scholar 

  16. G. Habert, J.B. Lacaillerie, and N. Roussel, J. Clean. Prod. 19(11), 1229 https://doi.org/10.1016/j.jclepro.2011.03.012 (2011).

    Article  Google Scholar 

  17. Y. Yao, W. Wang, Z. Ge, C. Ren, X. Yao, and S. Wu, Cem. Concr. Compos. 112, 103687 https://doi.org/10.1016/j.cemconcomp.2020.103687 (2020).

    Article  Google Scholar 

  18. W. Guo, B. Xi, C. Huang, J. Li, Z. Tang, W. Li, C. Ma, and W. Wu, Resour. Conserv. Recy. 173, 105727 https://doi.org/10.1016/j.resconrec.2021.105727 (2021).

    Article  Google Scholar 

  19. C. Ren, S. Wu, W. Wang, L. Chen, Y. Bai, T. Zhang, H. Li, and Y. Zhao, J. Build. Eng. 64, 105550 https://doi.org/10.1016/j.jobe.2022.105550 (2023).

    Article  Google Scholar 

  20. S. Rahimi, A. Hafezalkotob, S.M. Monavari, A. Hafezalkotob, and R. Rahimi, J. Clean. Prod. 248, 119186 https://doi.org/10.1016/j.jclepro.2019.119186 (2020).

    Article  Google Scholar 

  21. S. Li, J. Zhang, Z. Li, C. Liu, and J. Chen, J. Hazard. Mater. 407, 124358 https://doi.org/10.1016/j.jhazmat.2020.124358 (2021).

    Article  Google Scholar 

  22. X. Wang, X. Li, X. Yan, C. Tu, and Z. Yu, Pedosphere 31(1), 28 https://doi.org/10.1016/S1002-0160(20)60058-3 (2021).

    Article  Google Scholar 

  23. J. Zhang, H. Tan, X. He, W. Yang, and X. Deng, Constr. Build. Mater. 249, 118763 https://doi.org/10.1016/j.conbuildmat.2020.118763 (2020).

    Article  Google Scholar 

  24. A. Mehta, and D.K. Ashish, J. Build. Eng. 29, 100888 https://doi.org/10.1016/j.jobe.2019.100888 (2020).

    Article  Google Scholar 

  25. A. Król, K. Mizerna, and M. Bożym, J. Hazard. Mater. 2020(384), 121502 https://doi.org/10.1016/j.jhazmat.2019.121502 (2020).

    Article  Google Scholar 

  26. X. Liu, N. Zhang, H. Sun, J. Zhang, and L. Li, Cem. Concr. Res. 41, 847 https://doi.org/10.1016/j.cemconres.2011.04.004 (2011).

    Article  Google Scholar 

  27. Z. Li, J. Zhang, S. Li, C. Lin, Y. Gao, and C. Liu, J. Clean. Prod. 285, 124896 https://doi.org/10.1016/j.jclepro.2020.124896 (2021).

    Article  Google Scholar 

  28. S. Zhang, L. Yang, F. Ren, J. Qiu, and H. Ding, Cem. Concr. Compos. 112, 103689 https://doi.org/10.1016/j.cemconcomp.2020.103689 (2020).

    Article  Google Scholar 

  29. H. Jiang, M. Fall, E. Yilmaz, Y. Li, and L. Yang, Powder Technol. 372, 258 https://doi.org/10.1016/j.powtec.2020.06.009 (2020).

    Article  Google Scholar 

  30. J.B. Camacho, S.M. Abdelkader, E.R. Pozo, and A.M. Terrades, Constr. Build. Mater. 70, 483 https://doi.org/10.1016/j.conbuildmat.2014.07.109 (2014).

    Article  Google Scholar 

  31. K. Seungwon, K. Yongjae, U. Muhammad, P. Cheolwoo, and H. Asad, J. Build. Eng. 33, 1 https://doi.org/10.1016/j.jobe.2020.101641 (2021).

    Article  Google Scholar 

  32. J. Yang, J. Zhang, and S. Zheng, Constr. Build. Mater. 183, 534 https://doi.org/10.1016/j.conbuildmat.2018.06.136 (2018).

    Article  Google Scholar 

  33. Z. Chen, Inorganic nonmetallic materials. Xi'an: Northwest University of Technology Press (Zhejiang, China, 2016), P. 5.

  34. P.E. Tsakiridis, G.D. Papadimitriou, S. Tsivilis, and C. Koroneos, J. Hazard. Mater. 152, 805 https://doi.org/10.1016/j.jhazmat.2007.07.093 (2008).

    Article  Google Scholar 

  35. Y. Gao, Z. Li, J. Zhang, C. Zhang, and J. Chen, Chem. Lett. 50(1), 128 https://doi.org/10.1246/cl.200662 (2021).

    Article  Google Scholar 

  36. J. Li, Y. Yao, S. Huang, and C. Wu, Constr. Build. Mater. 308, 125034 https://doi.org/10.1016/j.conbuildmat.2021.125034 (2021).

    Article  Google Scholar 

  37. L. Žibret, A. Ipavec, and S. Dolenec, Constr. Build. Mater. 321, 126289 https://doi.org/10.1016/j.conbuildmat.2021.126289 (2022).

    Article  Google Scholar 

  38. C. Lin, W. Dai, Z. Li, and Y. Wang, Constr. Build. Mater. 251, 118930 https://doi.org/10.1016/j.conbuildmat.2020.118930 (2020).

    Article  Google Scholar 

  39. J. Zhou, G. Ye, and K. Breugel, Cem. Concr. Res. 40(7), 1120 https://doi.org/10.1016/j.cemconres.2010.02.011 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Major Scientific and Technological Innovation Projects in Shandong Province (grant nos. 2020CXGC011405 and 2021CXGC010301) and the Key Projects of Natural Science Foundation of Shandong Province (no. 2020KE006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaofeng Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 174 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Y., Liu, X., Li, Z. et al. Preparation, Characterisation, and Properties of Anti-erosion Grouting Materials from Industrial Solid Waste. JOM 75, 5252–5263 (2023). https://doi.org/10.1007/s11837-023-05893-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-05893-5

Navigation