Skip to main content
Log in

Physical Properties of Biomimetic Fibrous Gelatin Networks

  • Biological Translation: Biological Materials Science and Bioinspired Design
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Preterm birth affects 10% of pregnancies worldwide, and the largest fraction of these untimely births is due to rupture of the amniotic sac. Biomimetic materials, such as electrospun fibrillar networks, show promise for patching the fetal membrane in cases of medical intervention, in which the tissue is transected. Here, gelatin membranes were generated in four different conditions, with and without crosslinking agents added to the electrospinning solution, plus with and without a heat treatment step to activate the crosslinkers. Drumhead puncture testing was used to measure elastic modulus and strength of electrospun materials. Stiffness was not affected by crosslinking condition, in contrast to failure strength. Results were compared with a previous study on fracture behavior of biomimetic electrospun materials, which demonstrated a third different trend in the same four material groups. Compared with natural amnion, electrospun materials were stiffer and stronger but less fracture resistant. Prior to application as a biomimetic tissue engineering scaffold, better understanding of structure-properties relationships in fibrillar materials is required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M.S. Vidal Jr., R.C.V. Lintao, M.E.L. Severino, O.A.G. Tantengco, and R. Menon, Front. Endocrinol. (Lausanne) 13, 1015622 https://doi.org/10.3389/fendo.2022.1015622 (2022).

    Article  Google Scholar 

  2. J.M. Hodek, J.M. von der Schulenburg, and T. Mittendorf, Health Econ. Rev. 1, 6 https://doi.org/10.1186/2191-1991-1-6 (2011).

    Article  Google Scholar 

  3. J. Villar, A.T. Papageorghiou, H.E. Knight, M.G. Gravett, J. Iams, S.A. Waller, M. Kramer, J.F. Culhane, F.C. Barros, A. Conde-Agudelo, Z.A. Bhutta, and R.L. Goldenberg, Am. J. Obstet. Gynecol. 206, 119 https://doi.org/10.1016/j.ajog.2011.10.866 (2012).

    Article  Google Scholar 

  4. D.M. Bond, P. Middleton, K.M. Levett, D.P. van der Ham, C.A. Crowther, S.L. Buchanan, and J. Morris, Cochrane Database Syst. Rev. https://doi.org/10.1002/14651858.CD004735.pub4 (2017).

    Article  Google Scholar 

  5. S.M. Winkler, M.R. Harrison, and P.B. Messersmith, Biomater. Sci. 7, 3092 https://doi.org/10.1039/c9bm00177h (2019).

    Article  Google Scholar 

  6. G.L. Bourne, Am. J. Obstet. Gynecol. 79, 1070 https://doi.org/10.1016/0002-9378(60)90512-3 (1960).

    Article  Google Scholar 

  7. G.D. Bryant-Greenwood, Placenta 19, 1 https://doi.org/10.1016/s0143-4004(98)90092-3 (1998).

    Article  Google Scholar 

  8. H. Oxlund, R. Helmig, J.T. Halaburt, and N. Uldbjerg, Eur. J. Obstet. Gynecol. Reprod. Biol. 34, 247 https://doi.org/10.1016/0028-2243(90)90078-f (1990).

    Article  Google Scholar 

  9. M.L. Oyen, R.F. Cook, and S.E. Calvin, J. Mater. Sci. Mater. Med. 15, 651 https://doi.org/10.1023/b:jmsm.0000030205.62668.90 (2004).

    Article  Google Scholar 

  10. E.M. Joyce, P. Diaz, S. Tamarkin, R. Moore, A. Strohl, B. Stetzer, D. Kumar, M.S. Sacks, and J.J. Moore, Placenta 38, 57 https://doi.org/10.1016/j.placenta.2015.12.011 (2016).

    Article  Google Scholar 

  11. M.L. Oyen, S.E. Calvin, and D.V. Landers, Am. J. Obstet. Gynecol. 195, 510 https://doi.org/10.1016/j.ajog.2006.02.010 (2006).

    Article  Google Scholar 

  12. K. Tonsomboon, and M.L. Oyen, J. Mech. Behav. Biomed. Mater. 21, 185 https://doi.org/10.1016/j.jmbbm.2013.03.001 (2013).

    Article  Google Scholar 

  13. J.M. Ludwick, and M.L. Oyen, MRS Adv. 5, 1783 https://doi.org/10.1557/adv.2020.188 (2020).

    Article  Google Scholar 

  14. Q. Jiang, H. Xu, S. Cai, and Y. Yang, J. Mater. Sci. Mater. Med. 25, 1789 https://doi.org/10.1007/s10856-014-5208-2 (2014).

    Article  Google Scholar 

  15. W. Chua, and M.L. Oyen, Cell. Molec. Bioeng. 2, 49 https://doi.org/10.1007/s12195-009-0049-7 (2009).

    Article  Google Scholar 

  16. J.D. James, J.M. Ludwick, M.L. Wheeler, and M.L. Oyen, J. Mater. Res. 35, 1227 https://doi.org/10.1557/jmr.2020.114 (2020).

    Article  Google Scholar 

  17. C.T. Koh, K. Tonsomboon, and M.L. Oyen, J. Roy. Soc. Interface Focus 9, 20190012 https://doi.org/10.1098/rsfs.2019.0012 (2019).

    Article  Google Scholar 

  18. A.L. Butcher, C.T. Koh, and M.L. Oyen, J. Mech. Behav. Biomed. Mater. 69, 412 https://doi.org/10.1016/j.jmbbm.2017.02.007 (2017).

    Article  Google Scholar 

  19. S. Guessasma, and M.L. Oyen, Soft Matter 12, 602 https://doi.org/10.1039/C5SM02342D (2015).

    Article  Google Scholar 

  20. E.A. Schober, R.P. Kusy, and D.A. Savitz, Ann. Biomed. Eng. 22, 540 https://doi.org/10.1007/BF02367090 (1994).

    Article  Google Scholar 

  21. E.K. Pressman, J.L. Cavanaugh, and J.R. Woods, Am. J. Obstet. Gynecol. 187, 672 https://doi.org/10.1067/mob.2002.125742 (2002).

    Article  Google Scholar 

  22. D. Kumar, R.M. Moore, B.M. Mercer, J.M. Mansour, R.W. Redline, and J.J. Moore, Placenta 42, 59 https://doi.org/10.1016/j.placenta.2016.03.015 (2016).

    Article  Google Scholar 

  23. A. Grémare, S. Jean-Gilles, P. Musqui, L. Magnan, Y. Torres, M. Fénelon, S. Brun, J.-C. Fricain, and N. L’Heureux, J. Mech. Behav. Biomed. Mater. 99, 18 https://doi.org/10.1016/j.jmbbm.2019.07.007 (2019).

    Article  Google Scholar 

  24. M.D. Shoulders, and R.T. Raines, Ann. Rev. Biochem. 78, 929 https://doi.org/10.1146/annurev.biochem.77.032207.120833 (2009).

    Article  Google Scholar 

  25. R.S. Rivlin, and A.G. Thomas, J. Polym. Sci. 10, 291 https://doi.org/10.1002/pol.1953.120100303 (1953).

    Article  Google Scholar 

  26. P.P. Purslow, J. Mater. Sci. 18, 3591 https://doi.org/10.1007/BF00540731 (1983).

    Article  Google Scholar 

  27. P.P. Purslow, J. Biomech. 16, 947 https://doi.org/10.1016/0021-9290(83)90058-1 (1983).

    Article  Google Scholar 

  28. J.P. Gong, Soft Matter 6, 2583 (2010).

    Article  Google Scholar 

  29. J.Y. Sun, X. Zhao, W.R. Illeperuma, O. Chaudhuri, K.H. Oh, D.J. Mooney, J.J. Vlassak, and Z. Suo, Nature 489, 133 (2012).

    Article  Google Scholar 

  30. R.F. Cook, and M.L. Oyen, J. Phys. Mater. 4, 021001 https://doi.org/10.1088/2515-7639/abdb39 (2021).

    Article  Google Scholar 

Download references

Acknowledgements

Funding was provided by the East Carolina University (ECU) Department of Engineering via graduate assistantship funding to MLW and by the ECU Division of Research, Economic Development and Engagement (REDE) via start-up funds to MLO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michelle L. Oyen.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wheeler, M.L., Oyen, M.L. Physical Properties of Biomimetic Fibrous Gelatin Networks. JOM 75, 2149–2157 (2023). https://doi.org/10.1007/s11837-023-05888-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-05888-2

Navigation