Skip to main content
Log in

Role of Cr in the Anticorrosion Ability of Weathering Steel Based on the Microcharacteristics of Synthetic α-FeOOH in the Presence of Cr(III)

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The effect of Cr on the corrosion behavior of weathering steel (WS) in a simulated industrial atmosphere has been clarified by determining the microcharacteristics of artificially synthesized α-FeOOH in the presence of Cr(III). WS showed higher corrosion resistance with increasing Cr content, and the effect became more obvious with prolonged corrosion time, which is because Cr addition helps form more compact rust layers and produces high contents of α-FeOOH and α-FexCr1−xOOH in the corrosion scales. Aging experiments showed that adding Cr(III) can enhance the compactness of corrosion scale via two mechanisms. Increased addition of Cr(III) can form schwertmannite as a precursor for α-FeOOH, which promotes the formation of α-FeOOH and increases its content in corrosion products. On the other hand, increased addition of Cr(III) can decrease the grain size of α-FeOOH and schwertmannite. Furthermore, Cr(III) can replace edge-shared Fe(III) octahedra in double-chain α-FeOOH to form α-FexCr1−xOOH in stable rust layers. These results further elucidate the function of Cr in the anticorrosion ability of WS in an industrial atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. H.E. Townsend, Corrosion 57, 497 (2001).

    Article  Google Scholar 

  2. Z. Wang, J. Liu, L. Wu, R. Han, and Y. Sun, Corros. Sci. 1, 67 (2013).

    Google Scholar 

  3. T. Kamimura and M. Stratmann, Corros Sci. 43, 429 (2001).

    Article  Google Scholar 

  4. H. Cano, I. Díaz, D. de la Fuente, B. Chico, and M. Morcillo, Mater. Corros. 8, 69 (2018).

    Google Scholar 

  5. J.S. Wang, P.Y. Shi, C.J. Liu, and M.F. Jiang, J. Iron Steel Res. Int. 22, 1022 (2015).

    Google Scholar 

  6. M. Stratmann, K. Bohnenkamp, and T. Ramchandran, Corros. Sci. 27, 905 (1987).

    Google Scholar 

  7. I. Díaz, H. Cano, P. Lopesino, D.D.L. Fuente, B. Chico, J.A. Jiménez, S.F. Medina, and M. Morcillo, Corros. Sci. 141, 146 (2018).

    Article  Google Scholar 

  8. Q.H. Zhao, W. Liu, Y.C. Zhu, B.L. Zhang, S.Z. Li, and M.X. Lu, Acta Metall Sin. 30, 164 (2016).

    Article  Google Scholar 

  9. M.H. Naveen, N.G. Gurudatt, and Y.B. Shim, Appl. Mater. Today. 9, 419 (2017).

    Article  Google Scholar 

  10. Y.H. Qian, C.H. Ma, D. Niu, J.J. Xu, and M.S. Li, Corros Sci. 74, 424 (2013).

    Article  Google Scholar 

  11. M. Yamashita, H. Miyuki, Y. Matsuda, H. Nagano, and T. Misawa, Corros Sci. 36, 283 (1994).

    Article  Google Scholar 

  12. Y.S. Choi and J.-G. Kim, Corrosion 6, 1202 (2000).

    Article  Google Scholar 

  13. H. Tanaka, A. Miyafuji, T. Ishikawa, and T. Nakayama, Adv. Powder Technol. 29, 9 (2018).

    Article  Google Scholar 

  14. K. Inouye, J. Colloid Interface Sci. 27, 171 (1968).

    Article  Google Scholar 

  15. K. Inouye, S. Ishii, K. Kaneko, and T. Ishikawa, Z. Anorg. Allg. Chem. 391, 86 (1972).

    Article  Google Scholar 

  16. T. Ishikawa, N. Motoyoshi, A. Yasukawa, K. Kandori, T. Nakayama, and F. Yuse, Zairyo-to-Kankyo 50, 155 (2001).

    Article  Google Scholar 

  17. T. Ishikawa and T. Nakayama, Zairyo-to-Kankyo 52, 140 (2003).

    Article  Google Scholar 

  18. T. Misawa, K. Asami, K. Hashimoto, and S. Shimodaira, Corros Sci. 14, 279 (1974).

    Article  Google Scholar 

  19. J.L. Mora-Mendoza and S. Turgoose, Corros. Sci. 44, 1223 (2002).

    Article  Google Scholar 

  20. I. Díaza, H. Canob, P. Lopesinoa, D. de la Fuente, B. Chicoa, J.A. Jiméneza, S.F. Medinaa, and M. Morcilloa, Corros Sci. 146, 141 (2018).

    Google Scholar 

  21. H. Tanaka, A. Miyafuji, K. Kandori, T. Ishikawa, and T. Nakayama, Corros. Sci. 66, 337 (2013).

    Article  Google Scholar 

  22. H. Tanaka, N. Hatanaka, M. Muguruma, A. Nishitani, T. Ishikawa, and T. Nakayama, Adv. Powder Technol. 27, 2291 (2016).

    Article  Google Scholar 

  23. H. Tanaka, N. Hatanaka, M. Muguruma, T. Ishikawa, and T. Nakayama, Corros Sci. 66, 136 (2013).

    Article  Google Scholar 

  24. M. Muguruma, H. Tanaka, T. Ishikawa, and T. Nakayama, Zairyo-to-Kankyo 64, 235 (2015).

    Article  Google Scholar 

  25. M. Schultz, W. Burckhardt, and S.T. Barth, J. Mater. Sci. 34, 2217 (1999).

    Article  Google Scholar 

  26. H. Tamura, Corros. Sci. 50, 2008 (1872).

    Google Scholar 

  27. T. Ishikawa, T. Motoki, R. Katoh, A. Yasukawa, K. Kandori, T. Nakayama, and F. Yuse, J. Colloid Interface Sci. 250, 74 (2002).

    Article  Google Scholar 

  28. X.Q. Cheng, Z. Jin, M. Liu, and X.G. Li, Corros Sci. 115, 135 (2017).

    Article  Google Scholar 

  29. U. Schwertmann, U. Gasser, and H. Sticher, Geochim Cosmochim. Acta. 53, 1293 (1989).

    Article  Google Scholar 

  30. R.D. Shannon, Acta Cryst. A 32, 751 (1976).

    Article  Google Scholar 

  31. M. Yamashita, H. Miyuki, H. Nagano, and T. Misawa, Testsu-to-Hagane 83, 36 (1997).

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the financial support provided by the Major Foundation of the Education Department of Anhui Province, PR China (KJ2017A046), and the National Natural Science Foundation, PR China (51774006).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weiming Liu or Hongbo Pan.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Wang, Q., Bian, Q. et al. Role of Cr in the Anticorrosion Ability of Weathering Steel Based on the Microcharacteristics of Synthetic α-FeOOH in the Presence of Cr(III). JOM 75, 3170–3182 (2023). https://doi.org/10.1007/s11837-023-05884-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-05884-6

Navigation