Skip to main content
Log in

Phase Equilibria in the System Nb2O5-MgO-SiO2 at 1673 K and 1523 K in Air

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Phase relationships of the Nb2O5-MgO-SiO2 system in equilibrium at 1673 K and 1523 K in air have been investigated by the high-temperature equilibration/quenching method. The compositions of equilibrium phase were determined by electron-probe X-ray microanalysis (EPMA) and X-ray diffraction (XRD). In this study, no ternary compounds were observed. The isothermal section of the system at 1673 K was triangulated into seven three-phase regions: SiO2-Nb2O5-Mg2/3Nb34/3O29, SiO2-Mg2/3Nb34/3O29-MgNb2O6, SiO2-MgSiO3-MgNb2O6, MgO-Mg2SiO4-Mg4Nb2O9, Mg2SiO4-MgNb2O6-Mg5Nb4O15, MgSiO3-Mg2SiO4-MgNb2O6, and Mg2SiO4-Mg5Nb4O15-Mg4Nb2O9. Similarly, the isothermal section at 1523 K was triangulated into six three-phase regions: SiO2-Nb2O5-MgNb2O6 region, SiO2-MgSiO3-MgNb2O6 region, MgO-Mg2SiO4-Mg4Nb2O9 region, Mg2SiO4-MgNb2O6-Mg5Nb4O15 region, MgSiO3-Mg2SiO4-MgNb2O6 region, and Mg2SiO4-Mg5Nb4O15-Mg4Nb2O9 region. The determination of the Nb2O5-MgO-SiO2 ternary system further enriches the thermodynamic databases of silicates and niobates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. T. Hashimoto and T. Yoko, Appl. Opt. 34, 2941 https://doi.org/10.1364/AO.34.002941 (1995).

    Article  Google Scholar 

  2. H. Maeda, S. Lee, T. Miyajima, A. Obata, K. Ueda, T. Narushima, T. Kasuga, and J. Non-Cryst, Solids 432, 60 https://doi.org/10.1016/j.jnoncrysol.2015.06.003 (2016).

    Article  Google Scholar 

  3. S. Lee, A.L.B. Maçon, and T. Kasuga, Mater. Lett. 175, 135 https://doi.org/10.1016/j.matlet.2016.04.027 (2016).

    Article  Google Scholar 

  4. R.L. Ciceo, M. Todea, D. Toloman, M. Muresan-Pop, and V. Simon, J. Non-Cryst. Solids 542, 120102 https://doi.org/10.1016/j.jnoncrysol.2020.120102 (2020).

    Article  Google Scholar 

  5. T. Komatsu, T. Honma, T. Tasheva, and V. Dimitrov, J. Non-Cryst. Solids 581, 121414 https://doi.org/10.1016/j.jnoncrysol.2022.121414 (2022).

    Article  Google Scholar 

  6. H.G. Schimmel, J. Huot, L.C. Chapon, F.D. Tichelaar, and F.M. Mulder, J. Am. Chem. Soc. 127, 14348 https://doi.org/10.1021/ja051508a (2005).

    Article  Google Scholar 

  7. O. Friedrichs, F. Aguey-Zinsou, J. Fernandez, J. Sanchez-Lopez, A. Justo, T. Klassen, R. Bormann, and A. Fernandez, Acta Mater. 54, 105 https://doi.org/10.1016/j.actamat.2005.08.024 (2006).

    Article  Google Scholar 

  8. Y. Xia, S. Zhu, X. Fu, Z. Huang, J. Su, Z. He, X. Liu, and Y. Zhang, J. Mater. Sci.: Mater. Electron. 33, 2125 https://doi.org/10.1007/s10854-021-07419-8 (2022).

    Article  Google Scholar 

  9. R. Rathnasamy, P. Thangasamy, V. Aravindhan, P. Sathyanarayanan, and V. Alagan, Chem. Intermed. 45, 3571 https://doi.org/10.1007/s11164-019-03809-0 (2019).

    Article  Google Scholar 

  10. M. Zhang, Y.X. He, H.J. Xu, C. Ma, J.F. Liang, Y.Y. Wang, and J. Zhu, Rare Met. 41, 814 https://doi.org/10.1007/s12598-021-01863-5 (2022).

    Article  Google Scholar 

  11. H. Ding, Z. Song, K. Feng, H. Zhang, H. Zhang, and X. Li, J. Solid State Chem. 299, 122136 https://doi.org/10.1016/j.jssc.2021.122136 (2021).

    Article  Google Scholar 

  12. P. Pernice, A. Aronne, V. Sigaev, M. Kupriyanova, and J. Non-Cryst, Solids 275, 216 https://doi.org/10.1016/S0022-3093(00)00258-1 (2000).

    Article  Google Scholar 

  13. T. Hayakawa, M. Hayakawa, M. Nogami, and P. Thomas, Opt. Mater. 32, 448 https://doi.org/10.1016/j.optmat.2009.10.006 (2010).

    Article  Google Scholar 

  14. S. Sakida, S. Hayakawa, and T. Yoko, J. Ceram. Soc. Jpn. 107, 395 https://doi.org/10.2109/jcersj.107.395 (1999).

    Article  Google Scholar 

  15. S. Lee, K. Ueda, T. Narushima, T. Nakano, and T. Kasuga, Bio-med Mater. Eng. 28, 23–30 https://doi.org/10.3233/BME-171652 (2017).

    Article  Google Scholar 

  16. O. Friedrichs, J.C. Sanchez-Lopez, C. Lopez-Cartes, T. Klassen, R. Bormann, and A. Fernandez, J. Phys. Chem. B 110, 7845 https://doi.org/10.1021/jp0574495 (2006).

    Article  Google Scholar 

  17. M.W. Rahman, S. Livraghi, F. Dolci, M. Baricco, and E. Giamello, Int. J. Hydrogen Energy 36, 7932 https://doi.org/10.1016/j.ijhydene.2011.01.053 (2011).

    Article  Google Scholar 

  18. M.W. Rahman, A. Castellero, S. Enzo, S. Livraghi, E. Giamello, and M. Baricco, J. Alloy. Compd. 509S, S438 https://doi.org/10.1016/j.jallcom.2011.02.064 (2011).

    Article  Google Scholar 

  19. N.L. Bowen and O. Andersen, Am. J. Sci. 37, 487 https://doi.org/10.2475/ajs.s4-37.222.487 (1914).

    Article  Google Scholar 

  20. M. Hillert and X. Wang, CALPHAD: Comput. Coupling Phase Diagrams Thermochem. 13, 253 https://doi.org/10.1016/0364-5916(89)90005-9 (1989).

    Article  Google Scholar 

  21. C.M. Schlaudt and D.M. Roy, J. Am. Ceram. Soc. 48, 248 https://doi.org/10.1111/j.1151-2916.1965.tb14730.x (1965).

    Article  Google Scholar 

  22. M. Ibrahim and N.F.H. Bright, J. Am. Ceram. Soc. 45, 221 https://doi.org/10.1111/j.1151-2916.1962.tb11130.x (1962).

    Article  Google Scholar 

  23. R. Norin, C.-G. Arbin, B. Nolander, M.J. Tricker, and S. Svensson, Acta Chem. Scand. 26, 3389 https://doi.org/10.3891/acta.chem.scand.26-3389 (1972).

    Article  Google Scholar 

  24. Y.C. You, H.L. Park, Y.G. Song, H.S. Moon, and G.C. Kim, J. Mater. Sci. Lett. 13, 1487 https://doi.org/10.1007/BF00419143 (1994).

    Article  Google Scholar 

  25. S. Pagola, R.E. Carbonio, J.A. Alonso, and M.T. Fernández-DÍaz, J. Solid State Chem. 134, 76 https://doi.org/10.1006/jssc.1997.7538 (1997).

    Article  Google Scholar 

  26. E. Brück, R.K. Route, R.J. Raymakers, R.S. Feigelson, and J. Cryst, Growth 128, 842 https://doi.org/10.1016/S0022-0248(07)80055-8 (1993).

    Article  Google Scholar 

  27. E. Jak, P.C. Hayes, and H.-G. Lee, Met. Mater. 1, 1 https://doi.org/10.1007/BF03055319 (1995).

    Article  Google Scholar 

  28. J. Qiu, C. Liu, Z. Liu, and Z. Yu, Ceram. Int. 45, 2281 https://doi.org/10.1016/j.ceramint.2018.10.142 (2019).

    Article  Google Scholar 

  29. L. Xia, Z. Liu, and P. Taskinen, J. Alloy. Compd. 687, 827 https://doi.org/10.1016/j.jallcom.2016.06.191 (2016).

    Article  Google Scholar 

  30. M. Chen, X. Wan, P. Taskinen, D. Sukhomlinov, J. Shi, R. Michallik, and A. Jokilaakso, Ceram. Int. 48, 20116 https://doi.org/10.1016/j.ceramint.2022.03.290 (2022).

    Article  Google Scholar 

  31. Y. Qiu, J. Shi, B. Yu, C. Hou, J. Dong, S. Li, Y. Zhai, J. Li, and C. Liu, J. Am. Ceram. Soc. 105, 6953 https://doi.org/10.1111/jace.18642 (2022).

    Article  Google Scholar 

  32. C. Liu, J. Qiu, Z. Liu, D. Zhu, and Y. Wang, Ceram. Int. 46, 7711–7718 https://doi.org/10.1016/j.ceramint.2019.11.274 (2020).

    Article  Google Scholar 

  33. M. Chen, X. Wan, J. Shi, P. Taskinen, and A. Jokilaakso, JOM. 74, 676 https://doi.org/10.1007/s11837-021-04870-0 (2022).

    Article  Google Scholar 

  34. M. Zhao, L. Song, and X. Fan, The boundary theory of phase diagrams and its application (Science Press, Beijing, 2009).

    Google Scholar 

  35. F.A. Hummel, in: M. Dekker (Eds.), Introduction to phase equilibria in ceramic systems, (Routledge, Boca Raton, 2018).

Download references

Acknowledgements

The authors would like to acknowledge the support received from the National Natural Science Foundation of China (No. 92062223).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Chen.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ran, M., Ren, G., Xiao, S. et al. Phase Equilibria in the System Nb2O5-MgO-SiO2 at 1673 K and 1523 K in Air. JOM 75, 3162–3169 (2023). https://doi.org/10.1007/s11837-023-05883-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-05883-7

Navigation