Skip to main content
Log in

Enhanced Corrosion Resistance and Mechanical Properties of Mg-Zn Alloy via Micro-alloying of Ge

  • Influence of Processing on Microstructure and Properties of Mg Alloys
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Generally, the corrosion of magnesium (Mg) and its alloys is accompanied by hydrogen production, which can cause gas pockets and severe biological problems when they are used as implants. Germanium (Ge) as an alloy additive can moderate the cathodic reaction of Mg alloys and significantly delay the corrosion of Mg alloys via the cathode “poisoning” effect. In this study, the influence of Ge (0–0.75 wt.%) on the mechanical properties and corrosion resistance of Mg-0.7Zn were evaluated using electrochemical tests, weight loss experiments, and compression tests to optimize the composition of the Mg-Zn-Ge alloy having a low corrosion rate and high mechanical properties. The results show that the eutectic mixture (α-Mg + Mg2Ge) is formed in the Mg matrix after adding Ge to the Mg alloys. Small amounts of Ge addition can effectively reduce the cathodic reaction rate and improve the corrosion resistance via the cathode poisoning effect, and strengthen the mechanical properties of the alloy due to the formation of Mg2Ge. However, a relatively high content of Ge results in the formation of mesh-like precipitates, causing strong galvanic corrosion between the α-Mg matrix and secondary phases compared with the cathode poisoning effect of Ge, thereby deteriorating the mechanical properties of the alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

References

  1. D. Zhao, F. Witte, F. Lu, J. Wang, J. Li, and L. Qin, Biomaterials 112, 287 (2017).

    Article  Google Scholar 

  2. Y. Yu, H. Lu, and J. Sun, Acta Biomater 71, 215 (2018).

    Article  Google Scholar 

  3. H.-S. Han, S. Loffredo, I. Jun, J. Edwards, Y.-C. Kim, H.-K. Seok, F. Witte, D. Mantovani, and S. Glyn-Jones, Mater. Today 23, 57 (2019).

    Article  Google Scholar 

  4. V. Tsakiris, C. Tardei, and F.M. Clicinschi, J. Magnes. Alloys 9, 1884 (2021).

    Article  Google Scholar 

  5. K. Saranya, M. Kalaiyarasan, S. Chatterjee, and N. Rajendran, Mater. Corros. 70, 698 (2019).

    Article  Google Scholar 

  6. H. Li, J. Wen, Y. Liu, and J. He, Mater. Corros. 73, 587 (2021).

    Article  Google Scholar 

  7. J. Li, Y. Song, S. Zhang, C. Zhao, F. Zhang, X. Zhang, L. Cao, Q. Fan, and T. Tang, Biomaterials 31, 5782 (2010).

    Article  Google Scholar 

  8. S. Zhang, X. Zhang, C. Zhao, J. Li, Y. Song, C. Xie, H. Tao, Y. Zhang, Y. He, Y. Jiang, and Y. Bian, Acta Biomater. 6, 626 (2010).

    Article  Google Scholar 

  9. J.W. Seong, and W.J. Kim, Acta Biomater. 11, 531 (2015).

    Article  Google Scholar 

  10. H.S. Brar, J. Wong, and M.V. Manuel, J. Mech. Des. 7, 87 (2012).

    Google Scholar 

  11. H. Zhou, R. Hou, J. Yang, Y. Sheng, Z. Li, L. Chen, W. Li, and X. Wang, J. Alloys Compd. 840, 155792 (2020).

    Article  Google Scholar 

  12. D. Zander, and N.A. Zumdick, Corros. Sci. 93, 222 (2015).

    Article  Google Scholar 

  13. J. Yu, L. Wang, Y. Wang, X. Cao, Y. Li, B. Xing, L. Lu, W. Cheng, H. Wang, K.S. Shin, and M. Vedani, Materialwiss. Werkst. 53, 819 (2022).

    Article  Google Scholar 

  14. R. Hou, J. Victoria-Hernandez, P. Jiang, R. Willumeit-Romer, B. Luthringer-Feyerabend, S. Yi, D. Letzig, and F. Feyerabend, Acta Biomater. 97, 608 (2019).

    Article  Google Scholar 

  15. S. Xu, Y. Hu, W. Yang, and B. Liu, Mater. Corros. 72, 1547 (2021).

    Article  Google Scholar 

  16. A. Gil-Santos, I. Marco, N. Moelans, N. Hort, and O. Van der Biest, Mater. Sci. Eng. C Mater. Biol. Appl. 71, 25 (2017).

    Article  Google Scholar 

  17. M. Bamberger, and G. Dehm, Ann. Rev. Mater. Res. 38, 505 (2008).

    Article  Google Scholar 

  18. A. Soltan, M.S. Dargusch, Z. Shi, D. Gerrard, and A. Atrens, Mater. Corros. 70, 1527 (2019).

    Article  Google Scholar 

  19. M. Cihova, E. Martinelli, P. Schmutz, A. Myrissa, R. Schaublin, A.M. Weinberg, P.J. Uggowitzer, and J.F. Loffler, Acta Biomater. 100, 398 (2019).

    Article  Google Scholar 

  20. P. Jiang, C. Blawert, R. Hou, J. Bohlen, N. Konchakova, and M.L. Zheludkevich, Mater. Des. 185, 108285 (2020).

    Article  Google Scholar 

  21. P. Jiang, C. Blawert, and M.L. Zheludkevich, Corros. Mater. Degrad. 1, 92 (2020).

    Article  Google Scholar 

  22. S. Wang, X. Zhang, J. Li, C. Liu, and S. Guan, Bioact. Mater. 5, 1 (2020).

    Article  Google Scholar 

  23. H. Qin, Y. Zhao, Z. An, M. Cheng, Q. Wang, T. Cheng, Q. Wang, J. Wang, Y. Jiang, X. Zhang, and G. Yuan, Biomaterials 53, 211 (2015).

    Article  Google Scholar 

  24. M. Cihova, P. Schmutz, R. Schäublin, and J.F. Löffler, Adv. Mater. 31, 1903080 (2019).

    Article  Google Scholar 

  25. P. Jiang, C. Blawert, N. Scharnagl, and M.L. Zheludkevich, Corros. Sci. 153, 62 (2019).

    Article  Google Scholar 

  26. P. Holweg, L. Berger, M. Cihova, N. Donohue, B. Clement, U. Schwarze, N.G. Sommer, G. Hohenberger, J. van den Beucken, F. Seibert, A. Leithner, J.F. Loffler, and A.M. Weinberg, Acta Biomater. 113, 646 (2020).

    Article  Google Scholar 

  27. N. Birbilis, G. Williams, K. Gusieva, A. Samaniego, M.A. Gibson, and H.N. McMurray, Electrochem. Commun. 34, 295 (2013).

    Article  Google Scholar 

  28. D. Bian, W. Zhou, J. Deng, Y. Liu, W. Li, X. Chu, P. Xiu, H. Cai, Y. Kou, B. Jiang, and Y. Zheng, Acta Biomater. 64, 421 (2017).

    Article  Google Scholar 

  29. R.L. Liu, J.R. Scully, G. Williams, and N. Birbilis, Electrochim. Acta 260, 184 (2018).

    Article  Google Scholar 

  30. H.B. Liu, X.G. Zhang, G.H. Qi, L. Pang, Y.T. Ma, S.H. Ji, and H.Y. Zhang, Mater. Res. Innov. 14, 342 (2013).

    Article  Google Scholar 

  31. R.L. Liu, M.F. Hurley, A. Kvryan, G. Williams, J.R. Scully, and N. Birbilis, Sci. Rep. 1, 1 (2016).

    Google Scholar 

  32. P. Jiang, C. Blawert, R. Hou, N. Scharnagl, J. Bohlen, and M.L. Zheludkevich, J. Alloys Compd. 783, 179 (2019).

    Article  Google Scholar 

  33. M. Liu, Y. Zhang, Q. Zhang, Y. Wang, D. Mei, Y. Sun, L. Wang, S. Zhu and S. Guan, J. Magnes. Alloys, online (2022).

  34. C.F. Glover, R.L. Liu, E.A. McNally, S. Mahboubi, J.R. McDermid, J.R. Kish, N. Birbilis, H.N. McMurray, and G. Williams, Corrosion 77, 134 (2020).

    Article  Google Scholar 

  35. R. Hou, F. Feyerabend, H. Helmholz, V.M. Garamus and R. Willumeit-Römer, J. Magnes. Alloys, online (2021).

  36. B. Zhang, Y. Hou, X. Wang, Y. Wang, and L. Geng, Mater. Sci. Eng. C Mater. Biol. Appl. 31, 1667 (2011).

    Article  Google Scholar 

  37. A. Nayeb-Hashemi, J. Clark, R. Olesinski and G.J.B.o.A.P.D. Abbaschian, Bull. Alloys Phase Diagr., 5, 359 (1984).

  38. X. Tong, D. Zhang, X. Zhang, Y. Su, Z. Shi, K. Wang, J. Lin, Y. Li, J. Lin, and C. Wen, Acta Biomater. 82, 197 (2018).

    Article  Google Scholar 

  39. M. Cheng, J. Chen, H. Yan, B. Su, Z. Yu, W. Xia, and X. Gong, J. Alloys Compd. 691, 95 (2017).

    Article  Google Scholar 

  40. R.L. Liu, Z.R. Zeng, J.R. Scully, G. Williams, and N. Birbilis, Corros. Sci. 140, 18 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the financial supports of the National Key Research and Development Program of China (2021YFC2400703) and the Natural Science Foundation of Henan Provincial (222300420309).

Funding

This work was supported by the National Key Research and Development Program of China [2021YFC2400703] and the Natural Science Foundation of Henan Provincial [222300420309]. The funding sources have no involvement in study design; in the collection, analysis and interpretation of data; in the writing of the report; and in the decision to submit the article for publication.

Author information

Authors and Affiliations

Authors

Contributions

ZZ: Conceptualization, Data curation, Formal analysis, Investigation, Writing—original draft. PJ: Conceptualization, Investigation, Writing—review & editing. RH: Investigation, Data curation, Formal analysis, Funding acquisition, Writing—review & editing. LW: Resources, Funding acquisition, Writing—review & editing. SZ: Resources, Funding acquisition, Writing—review & editing. SG: Resources, Funding acquisition, Writing—review & editing.

Corresponding authors

Correspondence to Ruiqing Hou or Shijie Zhu.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 63 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, Z., Jiang, P., Hou, R. et al. Enhanced Corrosion Resistance and Mechanical Properties of Mg-Zn Alloy via Micro-alloying of Ge. JOM 75, 2326–2337 (2023). https://doi.org/10.1007/s11837-023-05858-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-05858-8

Navigation