Skip to main content
Log in

In-Situ X-Ray Imaging High Strain Rate Compression of Laminate Al-Graphene Composite and Mechanical Property Characterization

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Owing to the opaque nature of the laminated structures, traditional high-speed optical camera cannot be used to detect the dynamic process of sub-surface deformation. In this article, we report a study of using high speed X-ray imaging to study the high strain rate deformation in laminated Al structures. We used a Kolsky bar apparatus to apply dynamic compression and a high-speed synchrotron X-ray phase contrast imaging (PCI) setup to conduct the in situ X-ray imaging study. The in situ X-ray imaging captures the shock wave propagation in the laminated structures. After shock compression, we characterized the microstructures by using transmission electron microscopy (TEM), which demonstrates an increase of dislocation density. The micro-pillar compression tests show that the yield strength at 0.2% offset of laminated Al-graphene composite has a significant increase of 67%, from 30 to 50 MPa, compared to laminate Al after shock loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. N.A. Mara, C.A. Bronkhorst and I.J. Beyerlein, Los Alamos National Lab.(LANL), Los Alamos, NM (United States) 2015.

  2. E. Bringa, K. Rosolankova, R. Rudd, B. Remington, J. Wark, M. Duchaineau, D. Kalantar, J. Hawreliak, and J. Belak, Nat. Mater. 5, 805–809 (2006).

    Article  Google Scholar 

  3. W.W. Chen, M.C. Hudspeth, B. Claus, N.D. Parab, J.T. Black, K. Fezzaa, and S.N. Luo, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 372, 20130191 https://doi.org/10.1098/rsta.2013.0191 (2014).

    Article  Google Scholar 

  4. N.D. Parab, J.T. Black, B. Claus, M. Hudspeth, J. Sun, K. Fezzaa, and W.W. Chen, Int. J. Appl. Glass Sci. 5, 363–373 https://doi.org/10.1111/ijag.12092 (2014).

    Article  Google Scholar 

  5. M.B. Zbib, N.D. Parab, W.W. Chen, and D.F. Bahr, Powder Technol. 283, 57–65 https://doi.org/10.1016/j.powtec.2015.04.066 (2015).

    Article  Google Scholar 

  6. N.D. Parab, Z.A. Roberts, M.H. Harr, J.O. Mares, A.D. Casey, I.E. Gunduz, M. Hudspeth, B. Claus, T. Sun, K. Fezzaa, S.F. Son, and W.W. Chen, Appl. Phys. Lett. 109, 131903 https://doi.org/10.1063/1.4963137 (2016).

    Article  Google Scholar 

  7. N.D. Parab, Z. Guo, M. Hudspeth, B. Claus, B.H. Lim, T. Sun, X. Xiao, K. Fezzaa, and W.W. Chen, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 375, 20160178 https://doi.org/10.1098/rsta.2016.0178 (2017).

    Article  Google Scholar 

  8. Z. Guo, M.J. Forrestal, S. Martinez-Morales, and W. Chen, J. Dyn. Behav. Mater. 5, 409–415 https://doi.org/10.1007/s40870-019-00200-3 (2019).

    Article  Google Scholar 

  9. N. Kedir, C.D. Kirk, Z. Guo, N.E. Kerschen, T. Sun, K. Fezzaa, and W. Chen, Int. J. Impact Eng. 129, 168–179 https://doi.org/10.1016/j.ijimpeng.2019.01.012 (2019).

    Article  Google Scholar 

  10. N.E. Kerschen, C.J. Sorensen, Z. Guo, J.O. Mares, K. Fezzaa, T. Sun, S.F. Son, and W.W. Chen, Propellants Explos. Pyrotech. 44, 447–454 https://doi.org/10.1002/prep.201800002 (2019).

    Article  Google Scholar 

  11. J.O. Mares, Z.A. Roberts, I. EmreGunduz, N.D. Parab, T. Sun, K. Fezzaa, W.W. Chen, S.F. Son, and J.F. Rhoads, Appl Mater Today 15, 286–294 https://doi.org/10.1016/j.apmt.2019.01.009 (2019).

    Article  Google Scholar 

  12. N.D. Parab, L. Xiong, Q. Guo, Z. Guo, C. Kirk, Y. Nie, X. Xiao, K. Fezzaa, W. Everheart, W.W. Chen, L. Chen, and T. Sun, Addit. Manufact. 30, 100878 https://doi.org/10.1016/j.addma.2019.100878 (2019).

    Article  Google Scholar 

  13. X. Zhai, J. Gao, H. Liao, C.D. Kirk, Y.A. Balogun, and W.W. Chen, Int. J. Impact Eng. 129, 112–118 https://doi.org/10.1016/j.ijimpeng.2019.03.002 (2019).

    Article  Google Scholar 

  14. X. Zhai, J. Gao, Y. Nie, Z. Guo, N. Kedir, B. Claus, T. Sun, K. Fezzaa, X. Xiao, and W.W. Chen, J. Mech. Phys. Solids 131, 358–371 https://doi.org/10.1016/j.jmps.2019.07.010 (2019).

    Article  Google Scholar 

  15. X. Zhai, Z. Guo, J. Gao, N. Kedir, Y. Nie, B. Claus, T. Sun, X. Xiao, K. Fezzaa, and W.W. Chen, Acta Biomater. 90, 278–286 https://doi.org/10.1016/j.actbio.2019.03.045 (2019).

    Article  Google Scholar 

  16. N. Kedir, E. Garcia, C. Kirk, Z. Guo, J. Gao, X. Zhai, T. Sun, K. Fezzaa, S. Sampath, and W.W. Chen, J Am Ceramic Soc 103, 4586–4601 https://doi.org/10.1111/jace.17165 (2020).

    Article  Google Scholar 

  17. X. Zhai, E.A. Nauman, D. Moryl, R. Lycke, and W.W. Chen, J. Mech. Behavior Biomed. Mater. 103, 103597 https://doi.org/10.1016/j.jmbbm.2019.103597 (2020).

    Article  Google Scholar 

  18. J. Wang, and A. Misra, Curr. Opin. Solid State Mater. Sci. 15, 20–28 https://doi.org/10.1016/j.cossms.2010.09.002 (2011).

    Article  Google Scholar 

  19. X. Liu, F. Wang, H. Wu, and W. Wang, Appl. Phys. Lett. 104, 231901 (2014).

    Article  Google Scholar 

  20. G.T. Gray, and J.C. Huang, Mater. Sci. Eng. A 145, 21–35 https://doi.org/10.1016/0921-5093(91)90292-U (1991).

    Article  Google Scholar 

  21. M. Yang, Y. Liu, T. Fan, and D. Zhang, Prog. Mater. Sci. 110, 100652 https://doi.org/10.1016/j.pmatsci.2020.100652 (2020).

    Article  Google Scholar 

  22. S. Gadipelli, and Z.X. Guo, Prog. Mater. Sci. 69, 1–60 https://doi.org/10.1016/j.pmatsci.2014.10.004 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

This research used resources of the Advanced Photon Source, a US Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. D. L. appreciates the support from the National Science Foundation under Award No. 1943445. The in situ micromechanical tests were performed in the Nebraska Center for Materials and Nanoscience, which is supported by the National Science Foundation under Award ECCS: 1542182 and the Nebraska Research Initiative.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian Wang or Dong Lin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, G., Xie, D., Nie, Y. et al. In-Situ X-Ray Imaging High Strain Rate Compression of Laminate Al-Graphene Composite and Mechanical Property Characterization. JOM 75, 3105–3110 (2023). https://doi.org/10.1007/s11837-023-05853-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-05853-z

Navigation