Skip to main content
Log in

Hot Deformation and Microstructure Evolution of a Cu-Ni-Co-Si-Cr-Mg Alloy

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

In this paper, a Cu-3.20Ni-0.61Co-0.75Si-0.19Cr-0.15 Mg (wt.%) alloy was subjected to hot compression at temperatures of 700–950°C and strain rates of 0.001–10 s−1. The constitutive equations were established using a strain-related Arrhenius model and a feed-forward artificial neural network (ANN) model. Evaluation showed that the ANN-type constitutive equation had a high Pearson correlation coefficient of 0.9997 and a low mean squared error of 2.55 MPa2; thus, it was more accurate to describe the flow behavior of the Cu-Ni-Co-Si-Cr-Mg alloy than the strain-related Arrhenius-type constitutive equation. The hot processing maps in the conditions of non-linear dissipation governed by the two constitutive equations were also established. Evaluation showed that the ANN-type hot processing maps successfully predicted unstable deformation and dynamically-recrystallized microstructure and thus had better performance than the Arrhenius-type hot processing maps. The microstructure of the Cu-Ni-Co-Si-Cr-Mg alloy after hot compression was also characterized in detail. The microstructural features were unstable deformation for the compression at 700°C and 0.001 s−1, uneven deformation for the compression at 700°C and 1 s−1, equiaxed subgrains for the compression at 950°C and 0.001 s−1 and equiaxed grains and annealing twins for the compression 950°C and 1 s−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. X. Wan, W. Xie, H. Chen, F. Tian, H. Wang, and B. Yang, J. Alloys Compd. 862, 158531 https://doi.org/10.1016/j.jallcom.2020.158531 (2021).

    Article  Google Scholar 

  2. J. Dai, M. Ma, Z. Xiao, X. Meng, G. Sun, T. Zhang, T. Zhou, L. Li, and Y. Zhu, Mater. Sci. Eng.: A 833, 142511 https://doi.org/10.1016/j.msea.2021.142511 (2022).

    Article  Google Scholar 

  3. Y. Ding, Z. Xiao, M. Fang, S. Gong and J. Dai, Mater. Sci. Eng.: A, 144603 (2023).

  4. S. Li, M. Fang, Z. Xiao, X. Meng, Q. Lei, and Y. Jia, J. Market. Res. 22, 2222–2238 (2023).

    Google Scholar 

  5. J. Yi, Y. Jia, Y. Zhao, Z. Xiao, K. He, Q. Wang, M. Wang, and Z. Li, Acta Mater. 166, 261–270 https://doi.org/10.1016/j.actamat.2018.12.047 (2019).

    Article  Google Scholar 

  6. Z. Liu, Y. Chen, H. Wei, and Z. Li, Mater. Lett. 236, 292–294 https://doi.org/10.1016/j.matlet.2018.10.128 (2019).

    Article  Google Scholar 

  7. H. Kim, J.H. Ahn, S.Z. Han, J. Jo, H. Baik, M. Kim, and H.N. Han, J. Alloys Compd. 832, 155059 https://doi.org/10.1016/j.jallcom.2020.155059 (2020).

    Article  Google Scholar 

  8. J. Zhu, S. Li, L. Shen, W. Yang, and L. Zhou, Trans. Nonferrous Met. Soc. China 27, 1096–1104 (2017).

    Article  Google Scholar 

  9. J. Li, G. Huang, X. Mi, L. Peng, H. Xie, and Y. Kang, Materials (Basel) 12, 2076 https://doi.org/10.3390/ma12132076 (2019).

    Article  Google Scholar 

  10. S.P. Tao, Z.L. Lu, L. Jia, H. Xie, and J.L. Zhang, Mater. Res. Express 7, 066520 https://doi.org/10.1088/2053-1591/ab9a7d (2020).

    Article  Google Scholar 

  11. J. Li, G. Huang, X. Mi, L. Peng, H. Xie, and Y. Kang, Materials (Basel) 12, 2855 https://doi.org/10.3390/ma12182855 (2019).

    Article  Google Scholar 

  12. Y.K. Wu, Y. Li, J.Y. Lu, S. Tan, F. Jiang, and J. Sun, Mat. Sci. Eng. A-Struct. 731, 403–412 https://doi.org/10.1016/j.msea.2018.06.075 (2018).

    Article  Google Scholar 

  13. R. Monzen, and C. Watanabe, Mat. Sci. Eng. A-Struct. 483–84, 117–119 https://doi.org/10.1016/j.msea.2006.12.163 (2008).

    Article  Google Scholar 

  14. Q. Lei, S.Y. Li, J.L. Zhu, Z. Xiao, F.F. Zhang, and Z. Li, Mater. Charact. 147, 315–323 https://doi.org/10.1016/j.matchar.2018.11.018 (2019).

    Article  Google Scholar 

  15. E. Lee, S. Han, K. Euh, S. Lim, and S. Kim, Met. Mater. Int. 17, 569–576 https://doi.org/10.1007/s12540-011-0807-7 (2011).

    Article  Google Scholar 

  16. W. Wang, E.Y. Guo, Z.N. Chen, H.J. Kang, Z.J. Chen, C.L. Zou, R.G. Li, G.M. Yin, and T.M. Wang, Mater. Charact. 144, 532–546 https://doi.org/10.1016/j.matchar.2018.08.003 (2018).

    Article  Google Scholar 

  17. S.Z. Han, J.H. Gu, J.H. Lee, Z.P. Que, J.H. Shin, S.H. Lim, and S.S. Kim, Met. Mater. Int. 19, 637–641 https://doi.org/10.1007/s12540-013-4002-x (2013).

    Article  Google Scholar 

  18. Z.L. Zhao, Z. Xiao, Z. Li, W.T. Qiu, H.Y. Jiang, Q. Lei, Z.R. Liu, Y.B. Jiang, and S.J. Zhang, Mat. Sci. Eng. a-Struct. 759, 396–403 https://doi.org/10.1016/j.msea.2019.05.003 (2019).

    Article  Google Scholar 

  19. J.Z. Huang, Z. Xiao, J. Dai, Z. Li, H.Y. Jiang, W. Wang, and X.X. Zhang, Mat Sci Eng a-Struct 744, 754–763 https://doi.org/10.1016/j.msea.2018.12.075 (2019).

    Article  Google Scholar 

  20. C. Wang, H. Fu, H. Zhang, X. He, and J. Xie, Mater. Sci. Eng. A 838, 142815 https://doi.org/10.1016/j.msea.2022.142815 (2022).

    Article  Google Scholar 

  21. Y. Wu, Y. Li, J. Lu, S. Tan, F. Jiang, and J. Sun, Mater. Sci. Eng., A 742, 501–507 https://doi.org/10.1016/j.msea.2018.11.045 (2019).

    Article  Google Scholar 

  22. Y.J. Ban, Y.F. Geng, J.R. Hou, Y. Zhang, M. Zhou, Y.L. Jia, B.H. Tian, Y. Liu, X. Li, and A.A. Volinsky, J. Mater. Sci. Technol. 93, 1–6 https://doi.org/10.1016/j.jmst.2021.03.049 (2021).

    Article  Google Scholar 

  23. Y. Lin, and X.-M. Chen, Mater. Des. 32, 1733–1759 (2011).

    Article  Google Scholar 

  24. X. Shen, D. Zhang, C. Yao, L. Tan, and X. Li, Mater. Today Commun. 31, 103772 (2022).

    Article  Google Scholar 

  25. K.H. Sim, Y.C. Ri, C.H. Jo, O.J. Kim, R.S. Kim, and H. Pak, Vacuum 210, 111749 (2023).

    Article  Google Scholar 

  26. W.N. Chen, S.J. Li, K.S. Bhandari, S. Aziz, N. Kosimov and D.W. Jung, In Materials Science Forum, (Trans Tech Publ: 2022), pp 3–10.

  27. D. Samantaray, S. Mandal, and A. Bhaduri, Comput. Mater. Sci. 47, 568–576 (2009).

    Article  Google Scholar 

  28. W. Peng, W. Zeng, Q. Wang, and H. Yu, Mater. Des. 51, 95–104 (2013).

    Article  Google Scholar 

  29. A. Abbasi-Bani, A. Zarei-Hanzaki, M. Pishbin, and N. Haghdadi, Mech. Mater. 71, 52–61 (2014).

    Article  Google Scholar 

  30. W. Xu, L. Zhou, X. Zhu, and W.-T. Qiu, Trans. Nonferrous Metals Soc. China 30, 2737–2748 (2020).

    Article  Google Scholar 

  31. S.-H. Song, Materials 13, 3766 (2020).

    Article  MathSciNet  Google Scholar 

  32. P. Wan, H. Zou, K. Wang, and Z. Zhao, Met. Mater. Int. 27, 4235–4249 (2021).

    Article  Google Scholar 

  33. D. Xue, W. Wei, W. Shi, X. Zhou, L. Rong, S. Wen, X. Wu, P. Qi, K. Gao, H. Huang, and Z. Nie, Mater. Today Commun. 32, 104076 https://doi.org/10.1016/j.mtcomm.2022.104076 (2022).

    Article  Google Scholar 

  34. G.L. Ji, Q. Li, K.Y. Ding, L. Yang, and L. Li, J. Alloy. Compd. 648, 397–407 https://doi.org/10.1016/j.jallcom.2015.06.264 (2015).

    Article  Google Scholar 

  35. R.L. Goetz, and S.L. Semiatin, J. Mater. Eng. Perform. 10, 710–717 https://doi.org/10.1361/105994901770344593 (2001).

    Article  Google Scholar 

  36. R. Ebrahimi, and A. Najafizadeh, J. Mater. Process. Technol. 152, 136–143 https://doi.org/10.1016/j.jmatprotec.2004.03.029 (2004).

    Article  Google Scholar 

  37. Y. Han, G.J. Qiao, J.P. Sun, and D.N. Zou, Comput. Mater. Sci. 67, 93–103 https://doi.org/10.1016/j.commatsci.2012.07.028 (2013).

    Article  Google Scholar 

  38. K. Song, Z. Li, M. Fang, Z. Xiao, Y. Zhu, and Q. Lei, Mater. Sci. Eng., A 845, 143178 (2022).

    Article  Google Scholar 

  39. Y. Zhu, Z. Xiao, Z. Li, K. Song, Q. Lei, and Y. Chen, JOM 74, 4352–4359 (2022).

    Article  Google Scholar 

  40. Y. Ban, Y. Zhang, Y. Jia, B. Tian, A.A. Volinsky, X. Zhang, Q. Zhang, Y. Geng, Y. Liu and X. Li, Materials and Design, 191, 108613 (2020). https://doi.org/10.1016/j.matdes.2020.108613

  41. F. Liu, J. Ma, L. Peng, G. Huang, W. Zhang, H. Xie, and X. Mi, Materials 13, 2042 (2020).

    Article  Google Scholar 

  42. P. Yong, X. Zhu, J. Yanlin, Z. Rui, Y. Jiang, Q. Wenting, and L. Zhou, J. Alloys Compd. 845, 156161 https://doi.org/10.1016/j.jallcom.2020.156161 (2020).

    Article  Google Scholar 

  43. Z. Zhao, Z. Li, Z. Xiao, M. Ma, and K. Song, JOM 73, 2274–2284 (2021).

    Article  Google Scholar 

  44. Y. Geng, X. Li, H. Zhou, Y. Zhang, Y. Jia, B. Tian, Y. Liu, A.A. Volinsky, X. Zhang, K. Song, G. Wang, L. Li, and J. Hou, J. Alloys Compd 821, 153518 https://doi.org/10.1016/j.jallcom.2019.153518 (2020).

    Article  Google Scholar 

  45. Y. Geng, Y. Zhang, K. Song, Y. Jia, X. Li, H.-R. Stock, H. Zhou, B. Tian, Y. Liu, A.A. Volinsky, X. Zhang, P. Liu, and X. Chen, J. Alloys Compd. 842, 155666 https://doi.org/10.1016/j.jallcom.2020.155666 (2020).

    Article  Google Scholar 

  46. T. Wang, Y. Chen, B. Ouyang, X. Zhou, J. Hu, and Q. Le, Mater Sci Eng A 816, 141259 https://doi.org/10.1016/j.msea.2021.141259 (2021).

    Article  Google Scholar 

  47. U.M. Chaudry, R. Jaafreh, A. Malik, T.-S. Jun, K. Hamad, and T. Abuhmed, Mathematics 10, 766 (2022).

    Article  Google Scholar 

  48. J.F. Durodola, Prog. Mater Sci. 123, 100797 https://doi.org/10.1016/j.pmatsci.2021.100797 (2022).

    Article  Google Scholar 

  49. S. Li, W. Chen, K.S. Bhandari, D.W. Jung, and X. Chen, Materials 15, 3788 (2022).

    Article  Google Scholar 

  50. L. Kanthi, P. Wankhede, S. Kurra, S.K. Singh, and S. Geetha Rajashekharan, J Mater Eng Perform 32, 462–474 https://doi.org/10.1007/s11665-022-07102-x (2023).

    Article  Google Scholar 

  51. A. Anitha Lakshmi, C. Srinivasa Rao, J. Gangadhar, C. Srinivasu, and S.K. Singh, Mater Today Proc 4, 946–956 https://doi.org/10.1016/j.matpr.2017.01.106 (2017).

    Article  Google Scholar 

  52. Y.V.R.K. Prasad, J. Mater. Eng. Perform. 12, 638–645 https://doi.org/10.1361/105994903322692420 (2003).

    Article  Google Scholar 

  53. Y. Ban, Y. Zhang, B. Tian, Y. Jia, K. Song, X. Li, M. Zhou, Y. Liu, and A.A. Volinsky, Materials 13, 3186 (2020).

    Article  Google Scholar 

  54. P. Yang, M. Zhou, Y. Zhang, Y. Jia, B. Tian, Y. Liu, X. Li, and A.A. Volinsky, Mater Charact 181, 111502 https://doi.org/10.1016/j.matchar.2021.111502 (2021).

    Article  Google Scholar 

  55. Y. Geng, X. Li, Y. Zhang, Y. Jia, H. Zhou, B. Tian, Y. Liu, A.A. Volinsky, X. Zhang, K. Song, P. Liu, and X. Chen, Vacuum 177, 109376 https://doi.org/10.1016/j.vacuum.2020.109376 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the National Key Research and Development Program of China (Grant No. 2021YFB3700700), the Key Technologies R&D Program of Yunnan Province (Grant No. 202102AB080019-1) and the Projects of State Key Laboratory of Powder Metallurgy, Central South University, Changsha, China. The authors are also grateful for the Hunan Navi New Materials Technology and the High Performance Computing Center of Central South University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhu Xiao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 329 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, M., Xiao, Z., Li, Z. et al. Hot Deformation and Microstructure Evolution of a Cu-Ni-Co-Si-Cr-Mg Alloy. JOM 75, 3083–3096 (2023). https://doi.org/10.1007/s11837-023-05848-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-05848-w

Navigation